

Welcome to your CDP Water Security Questionnaire 2023

W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

BAT is a FTSE top-10, multi-category consumer goods business with more than 50,000 employees worldwide, sales across more than 170 markets and a large agricultural and non-agricultural supply chain. Spread across six continents, our operating regions for the relevant period are the United States of America; Americas and Sub-Saharan Africa; Europe; and Asia-Pacific and Middle East. BAT Group generated revenue of £27.66 billion in 2022 and profit from operations of £10.5 billion. BAT's purpose is to build A Better Tomorrow[™] by reducing the health impact of its business through offering a greater choice of enjoyable and less risky products*† for adult consumers.

The company's Strategic Portfolio is made up of its global cigarette brands and a growing range of reduced-risk*† New Category tobacco and nicotine products and traditional non-combustible tobacco products. These include vapour, tobacco heating products, modern oral products including tobacco-free nicotine pouches, as well as traditional oral products such as snus and moist snuff. BAT has set stretching sustainability targets, including: making all packaging reusable, recyclable or compostable by 2025; halving CO2e emissions across scope 1, 2 & 3 and achieving carbon neutral operations for scope 1 & 2 GHG emissions by 2030; and, achieving net zero GHG emissions across its value chain (scope 1, 2 & 3) by 2050.

2022 marked BAT's 21st consecutive year in the Dow Jones Sustainability Index (DJSI) World Indices, representing the top 10% of ESG performers globally according to DJSI's assessment criteria. The Financial Times identified BAT as a Climate Leader for the third year running in 2023, placing it in the top 3% of companies in Europe for achieving reductions in scope 1 and 2 emissions intensity. * Based on the weight of evidence and assuming a complete switch from cigarette smoking. These products are not risk free and are addictive. † Our products as sold in the US, including Vuse, Velo, Grizzly, Kodiak, and Camel Snus, are subject to Food & Drug Administration (FDA) regulation and no reduced-risk claims will be made as to these products without FDA clearance.

W-FB0.1a/W-AC0.1a

(W-FB0.1a/W-AC0.1a) Which activities in the food, beverage, and tobacco and/or agricultural commodities sectors does your organization engage in?

Agriculture Processing/Manufacturing Distribution

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

	Start date	End date
Reporting year	December 1, 2021	November 30, 2022

W0.3

(W0.3) Select the countries/areas in which you operate.

Algeria
Argentina
Australia
Bangladesh
Belarus
Bosnia & Herzegovina
Brazil
Canada
Chile
Colombia
Croatia
Czechia
Fiji
France
Germany
Honduras
Hungary
Indonesia
Italy
Japan
Jordan
Kazakhstan
Kenya
Malaysia
Mexico
Mozambique
Netherlands
Nigeria

Pakistan Papua New Guinea Paraguay Poland Republic of Korea Romania **Russian Federation** Samoa Saudi Arabia Serbia Singapore South Africa Spain Sri Lanka Sudan Sweden Switzerland Trinidad and Tobago Turkey Ukraine **United Arab Emirates** United Kingdom of Great Britain and Northern Ireland United States of America Uzbekistan Venezuela (Bolivarian Republic of) Viet Nam Zambia Zimbabwe

 \bigcirc Other: Rest of the world: other countries incl. small operations, not material in terms of total emissions. These are BAT units in 30 countries, that in total give less than 2.3% of total Water Withdrawn and have no facilities in water stressed zones

W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.

GBP

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.

Companies, entities or groups over which operational control is exercised

W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?

No

W0.7

(W0.7) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

Indicate whether you are able to provide a unique identifier for your organization.	Provide your unique identifier
Yes, an ISIN code	GB0002875804
Yes, a Ticker symbol	BATS / LEI - 213800FKA5MF17RJKT63

W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

	Direct use importance rating	Indirect use importance rating	Please explain
Sufficient amounts of good quality freshwater available for use	Important	Important	Maintaining a stable supply of freshwater is crucial for our production processes and ensuring the quality of our products meets demand. We strive to avoid any perception of "depriving" local communities of water as responsible members of those communities. In our direct operations, freshwater plays a vital role. It is used in leaf processing at Green Leaf Threshing plants (GLTs), tobacco conditioning for humidity control, and casing preparation in factories. Additionally, it is used in equipment cleaning during product blend switches on the same production line. The use of freshwater is essential to guarantee the manufacturing of high- quality products. To assess our reliance on water sources, including
			TO assess our reliance on water sources, including

			freshwater, we have conducted an Alliance for Water Stewardship (AWS) gap analysis and certification program for several of our factories and GLTs. Looking ahead, the importance rating of freshwater in our direct operations is expected to remain unchanged. In indirect operations, freshwater is required for crop growth by the farmers who supply us with tobacco. Since natural rainfall can vary, additional watering is necessary to ensure proper leaf quality. The future importance rating of freshwater in our indirect operations is expected to remain the same. Considering our heavy reliance on tobacco as an agricultural commodity, access to freshwater is vital for our company. We actively manage water- related risks in our direct operations and value chains. Through initiatives such as the Sustainable Tobacco Program and Supplier Code of Conduct, we engage with farmers and suppliers to reduce irrigation needs by implementing modern agricultural practices. We provide technical assistance and support our suppliers in achieving lower water usage rates. Collaborating with suppliers is crucial for BAT to ensure a comprehensive understanding of the significance
			of water security to their communities, businesses, and long-term sustainability for their families.
Sufficient amounts of recycled, brackish and/or produced water available for use	Important	Important	Recycled water is primarily used for irrigation, cleaning, sanitation, and non-process related activities. We do not use brackish water or produced water in our manufacturing process due to quality concerns.
			Our sites have undergone AWS gap analysis across 2021-2022 and certification, mapping their water sources, including recycled water, to understand reliance and identify opportunities for further recycling.

Recycled water accounts for 22.6% of our total
water usage in direct operations (withdrawn and
recycled water combined). However, due to
limitations in current water treatment technology, it
cannot be used in product manufacturing.
Therefore, its importance rating is considered
"neutral".
We recognize the increasing importance of water
quality and quantity in the future based on
comprehensive data and insights. To address this,
we continue to work across all operational sites to
identify opportunities for increasing water recycling
and reuse, aiming to achieve our corporate
objective of 30% by 2025.
In our indirect operations, farmers' households
producing tobacco for us are the major water
users. Desalination or further treatment of brackish
water for recycling/reuse is not feasible for these
households, and produced water is not relevant to
their operations.
Considering these factors, the importance of
brackish and/or produced water lies in the
increase of recycled water with high purity levels.
This allows us to reduce our reliance on
groundwater and freshwater sources, thereby
minimizing our impacts on watersheds where we
operate. Similar to our direct operations, we
acknowledge the growing importance of water
quality and quantity in the future. Therefore, we
prioritize collaboration with farmers and farming
communities, promoting new irrigation techniques
and focusing on reducing water withdrawal from
natural sources.

W-FB1.1a/W-AC1.1a

(W-FB1.1a/W-AC1.1a) Which water-intensive agricultural commodities that your organization produces and/or sources are the most significant to your business by revenue? Select up to five.

	% of revenue	Produced	Please explain
commodities	dependent on	and/or	
	these	sourced	

agricultural commodities	
TobaccoMore than 80%SourcedAs BAT does not own tobacc around 400,000 tons of tobac grown by 81,000 directly cont an estimated 195,000 farmer 	cco leaf each year, tracted farmers and s of 3rd party s volume of tobacco is tobacco heated es contributed more 022 and hence that's acco as an bbacco supply chain in withdrawn/tobacco), ns we have in place. effective irrigation, d in our key suppliers,

W1.2

(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

	% of sites/facilities/operations	Frequency of measurement		Please explain
Water withdrawals – total volumes	100%	Monthly	At larger facilities data is taken at real time via Building Management Systems. For all other locations, metering and or invoice data is taken monthly.	All sites collect water data based on metering and monthly invoices from water suppliers. Small offices estimate water withdrawn per headcount or area occupied. Metering data is taken monthly, while at major sites it is taken in real time via Building Management Systems (BMS). Sites report water

		withdrawn data via
		a global online
		reporting tool
		monthly.
		Data reported by
		sites is reviewed at
		regional & global
		level. Data is
		aggregated for
		appropriate
		geography &
		reported to a range
		of internal and
		external
		stakeholder
		groups. Water
		withdrawn is one of
		our Group KPI,
		against which
		targets are set and
		monitored on a
		regular basis.
		Among other KPIs,
		water withdrawn is
		reported as per GRI and other
		reporting standards
		(DJSI) and
		published in the
		2022 Combined
		Annual & ESG
		Report. BAT has
		adopted the
		Alliance For Water
		Stewardship (AWS)
		standard and aims
		to have 100% of
		our operations sites
		certified by 2025.
		36% of our
		operations sites
		were certified in
		2022.

Water	100%	Monthly	At larger	All sites are
withdrawals -			facilities data is	required to
volumes by			taken at real	maintain water
source			time via Building	supply maps
			Management	indicating all water
			Systems. For all	sources. Sites
			other locations,	collect water
			metering and or	withdrawn data
			invoice data is	based on
			taken monthly.	measurement
				(metering) and
				monthly invoices
				from water
				suppliers. Small offices estimate
				water withdrawn
				per headcount or
				area occupied.
				Metering is done at
				least monthly, while
				at major sites - in
				real time via
				Building
				Management
				System (BMS).
				Data of water
				withdrawn with
				breakdown by
				source are reported
				via Global online
				reporting tool
				monthly. The data
				reported by sites
				are reviewed by
				Sustainability
				teams at Regional
				and Global level.
				Water withdrawn
				data with
				breakdown by
				source are
				aggregated at the
				Group level and
				reported to a range
				of internal

				stakeholders and externally, e.g. for DJSI report. BAT has adopted the AWS standard and aims to have 100% of our operation sites certified by 2025. 36% of our operations sites were certified in 2022.
Water withdrawals quality	100%	Yearly	Water sampling, performed by certified independent laboratories	All sites review all water withdrawals to ensure registrations &/or permits have been obtained & verified in line with legal requirements as minimum. Sites ensure the quality of water complies with local regulations & our internal standards, depending on its purpose through selection of source of water withdrawn & appropriate treatment. Measurement of water quality is performed through sampling by independent certified laboratories and, at major sites, continuously controlled via sampling by utilities

Water	100%	Monthly	At larger	of measurements is as per legal requirements. Annually all operations sites review their self- assessment as per our internal water roadmap assessment tool, which regulates requirements for water withdrawn quality when submitted via our online environmental reporting system. Data is reviewed at regional & global level. BAT has adopted the AWS standard & aims to have 100% of our operations sites certified by 2025. 36% of relevant operations sites were certified in 2022.
discharges – total volumes			facilities data is taken at real time via building management systems. For all other locations, metering and or invoice data is taken monthly.	water discharge data based on measurement (metering) and invoices from sewage water collectors. Smaller sites may estimate water discharge based on water withdrawn.

frequency:
Monitoring is done
at least annually. At
major sites -
monthly, while at
some of them - in
real time via
Building
Management
Systems (BMS).
Sites report water
discharge data via
Global on-line
reporting tool
monthly.
Review and use of
the data: The data
reported by sites
are reviewed by
Sustainability
teams at Regional
and Global level.
Water discharge
data with
breakdown by
source are
aggregated at the
Group level and
reported to a range
of internal
stakeholders and
externally, e.g. for
DJSI report. BAT
has adopted the
Alliance for Water
Stewardship (AWS)
standard and aims to have 100% of
our operations sites
certified by 2025.
36% of relevant
operations sites
were certified in
2022.

Water	100%	Monthly	At larger	Sites collect water
	100 /6	wonting	facilities data is	
discharges –			taken at real	discharge data
volumes by				through metering
destination			time via building	and invoices.
			management	Smaller sites
			systems. For all	estimate discharge
			other locations,	based on water
			metering and or	withdrawn.
			invoice data is	Destinations are
			taken monthly.	mapped, and
				permits obtained.
				Monitoring varies:
				real-time in some
				sites, monthly in
				most, and annual in
				others.
				Monthly reports
				follow GRI
				standards using an
				online tool. Water
				discharge
				breakdown is
				tracked, reflected in
				the environmental
				reporting manual,
				and covered in
				team trainings.
				Annually, units
				review water
				quality
				management
				requirements.
				Regional & Global
				EHS review
				reported data,
				aggregated at the
				Group level for
				internal and
				external reporting
				(e.g. DJSI). BAT
				has adopted the
				Alliance for Water
				Stewardship (AWS)
				standard and aims
				to have 100% of

				our operations sites certified by 2025. 36% of relevant operations sites were certified in 2022.
Water discharges – volumes by treatment method	100%	Monthly	At larger facilities data is taken at real time via building management systems. For all other locations, metering and or invoice data is taken monthly.	All sites review water discharges to ensure registrations and/ or permits have been obtained and verified in line with legal requirements, incl. regulating water treatment on site and regulating water discharge quality and quantity by destination to ensure treatment on site is sufficient prior to discharge. As per our Global vater Management Standard, sites are required to document Water Discharge Inventory, including volume discharged by treatment method and include corrective actions wherever any abnormalities are detected.

	100%	Veerly	Water compliant	collected from the sites monthly. Annually all operations sites are required to review their self- assessment against the Water Roadmap, which regulates the requirements for water discharge. Results of self- assessments and updates on actions plan are submitted by sites annually thorough on-line environmental reporting system.
Water discharge quality – by standard effluent parameters	100%	Yearly	Water sampling, performed by certified independent laboratories.	All sites reviewwater discharges toensureregistrations and/orpermits have beenobtained andverified in line withlegal requirements,incl. thoseregulating waterdischarge quality interms of standardeffluentparameters, as theminimum. Standardeffluent parametersas per legalrequirements areperiodicallymeasured bysampling byexternal certifiedlaboratories and, atthe major sites,controlled internally

				by Utilities depts. When any abnormalities are detected, sites are required to implement corrective actions to get back on track. Annually all operations sites are required to review
				their self- assessment against the Water Roadmap, which regulates the requirements for water discharge. Results of self- assessments, updates on actions plan are submitted
				by sites annually through online environmental reporting system. Further, annually all reporting units complete an EHS compliance Roadmap assessment, stipulating the
				stipulating the requirements for discharged water quality management.
Water discharge quality – emissions to water (nitrates, phosphates, pesticides, and/or other	100%	Yearly	Water sampling, performed by certified independent laboratories.	Water discharge quality is managed locally dependent on the wastewater quality parameters defined as per any permits, licenses or agreements with

priority				water authorities or
substances)				regulators. In addition to this, in 2022, globally we performed a screening for priority substances and pesticides, phosphates and nitrates. 100% of our operational sites reported no process use of these substances, and 38% reported not using them in any on-site ancillary or support services.
Water discharge quality – temperature	100%	Yearly	Yearly – Although not fixed and carried out as and when required as part of all relevant regulatory requirements, as a minimum water quality will be measured annually.	

				abnormalities are
				detected, sites are
				required to
				implement
				corrective actions
				to get back on
				track.
				Annually all
				operations sites are
				required to review
				their self-
				assessment
				against the Water
				Roadmap, which
				regulates the
				requirements for
				water discharge
				results of self-
				assessments and
				updates on actions
				plan are submitted
				by sites annually
				through on-line
				environmental
				reporting system.
				Further, annually
				all reporting units
				complete an EHS
				compliance
				Roadmap
				assessment
				stipulating the
				requirements for
				discharged water
				quality
				management.
Water	100%	Monthly	At larger	Sites track water
consumption –		-	facilities data is	consumption based
total volume			taken at real	on data for water
			time via Building	withdrawn and
			Management	water discharged
			Systems. For all	(C = W - D, where
			other locations,	C – consumption,
			metering and or	W – water
				withdrawn, D –

			invoice data is taken monthly.	water discharged). Measurements are completed based on metering and/ or monthly invoices from water suppliers and wastewater services providers. All sites are required to report water consumption data, monthly via Global on-line reporting tool. The data reported by sites are reviewed by Sustainability teams at regional and global level. Water consumption performance data aggregated for appropriated geography are reported to a range of internal and external
Water recycled/reused	100%	Monthly	At larger facilities data is	groups. Sites collect water recycled/ reused
			taken at real time via building management systems. For all other locations, metering data is taken monthly.	data via metering. Wherever measurement capabilities are not fully in place, these are based on estimates prepared by Engineering/ Utilities departments. Measurements at the major sites monitor parameters

				in real time via
				building
				management
				systems, with other
				sites reporting
				monthly. Monthly
				water recycled/
				reused data is
				reported by all sited
				via our global
				online reporting
				tool. Data reported
				by sites is reviewed
				by Sustainability
				teams at regional &
				global level. Water
				recycled
				performance data
				aggregated for
				appropriate
				geography is
				reported to a range
				of internal and
				external
				stakeholder
				groups. Water
				recycled/ reuse is
				one of our Group
				KPIs for which
				2025 targets are
				set. Among other
				KPIs, water
				recycled data are
				aggregated at the
				Group level and
				reported as per
				GRI to DJSI and in
				publications incl.
				Sustainability
				report and Annual
				report.
The provision of	100%	Yearly	EHS compliance	All sites are
fully-functioning,			self-	required to
safely managed			assessment,	complete self-
Salory managod			completed	assessment as per
			sompiotou	accontinuation as per

WASH services	locally a	and	EHS Compliance
to all workers	validate		Roadmap, the
		as part	document for self-
		orporate	assessment for
	audit cy		compliance to our
		0.01	Global EHS
			standards.
			Relevant standards
			stipulate that
			personnel hygiene
			& welfare facilities
			must be in
			accordance with
			legal hygiene
			standards & covers
			sanitation,
			washrooms and
			food areas control
			as well as control
			over hygienic
			quality of drinking
			water. Requirement
			for providing
			access to proper
			water & sanitation
			facilities to
			employees & other
			personnel at
			premises is
			stipulated in the
			water section of our
			Group Environment
			Policy. Annually all
			reporting units
			complete an EHS
			Compliance
			Roadmap
			stipulating the
			requirements for
			hygiene, incl.
			WASH services. All
			operations sites
			review their self-
			assessment
			against the Water
			Roadmap, which

		regulates the
		requirements to
		social water, incl.
		sanitary
		installations, water
		use in canteen &
		maintenance of the
		systems. Self-
		assessments,
		updates are
		submitted annually
		via online reporting
		system.
1		

W1.2b

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

	Volume (megaliters/ye ar)	Comparis on with previous reporting year	Primary reason for comparison with previous reporting year	Five- year foreca st	Primary reason for forecast	Please explain
Total withdrawal s	3,498	Lower	Increase/decre ase in efficiency	Lower	Investment in water-smart technology/proc ess	We adhere to the GRI 303: Water and Effluents 2018 Standard for defining and measuring water withdrawn. This includes water from various sources such as surface water, groundwater, rainwater, and third-party suppliers, utilized in our direct operations for

			manufacturing,
			utilities, and
			social
			purposes.
			However,
			irrigation
			activities in
			agriculture,
			such as leaf
			growing, are not
			considered.
			To collect water
			withdrawn data,
			we utilize an
			online reporting
			system
			(Credit360).
			Major sites
			employ real-
			time monitoring
			through
			Building
			Management
			Systems
			(BMS), while
			smaller offices
			estimate their
			water
			withdrawn
			based on
			occupied area
			or headcount.
			In 2022, we achieved a
			7.0% reduction
			in water
			m water withdrawn
			compared to
			the previous
			year. This
			reduction was
			primarily driven
			by
			implementing
			water efficiency
			initiatives,
			milatives,

		conducting
		water loss
		analyses, and
		adopting water-
		saving
		technologies at
		our factories
		and Green Leaf
		Threshing
		plants (GLTs).
		Additionally, we
		have focused
		on replacing
		fresh water with
		recycled water
		in non-
		production
		processes,
		where possible.
		Factors such as
		changes in
		production
		volume and
		divestments in
		certain regions
		also contributed
		to the reduction
		in water
		withdrawn.
		Looking ahead,
		we anticipate a
		gradual
		decrease in
		water
		withdrawn
		within the same
		reporting scope,
		aligned with our
		target of
		reducing water
		withdrawn by
		35% compared
		to our 2017
		baseline by
		2025. Achieving
		this target will

			involve the
			implementation
			of water-smart
			technologies,
			process
			optimization,
			continued
			efforts to
			eliminate water
			losses, and
			enhanced
			control of water
			usage by area
			or specific
			processes
			within our
			facilities.
			Collaboration
			with the
			Alliance for
			Water
			Stewardship
			(AWS) will
			enable us to
			explore further
			opportunities for
			water
			stewardship.
			Consistently
			applied trend
			thresholds
			classify any
			year-on-year
			change of over
			+/-5% as
			"Higher" or
			"Lower," while
			changes
			exceeding +/- 30% are
			categorized as
			"Much higher" or "Much
			lower.""
			iower.

Total	1,659	Lower	Increase/decre	Lower	Investment in	We adhere to
discharge			ase in		water-smart	the GRI 303:
S			efficiency		technology/proc	Water and
					ess	Effluents 2018
						Standard for
						water discharge
						definition,
						encompassing
						effluents, used
						and unused
						water released
						to various water
						sources. Data
						on water
						discharge with
						destination
						breakdown is
						collected via
						our online
						reporting
						system
						(Credit360).
						Sites obtain
						data through
						internal
						metering or
						supplier
						invoices.
						Estimates are
						employed when
						metering is
						unavailable,
						based on water
						withdrawn
						volumes and
						equipment/proc
						ess water
						consumption
						averages.
						A 13.0%
						reduction in
						water discharge
						was achieved
						compared to
						2021, driven by

			water-saving
			technology,
			efficiency
			measures, and
			lower
			production
			output.
			Optimization of
			water use for
			social needs,
			cleaning, and
			recycling
			contributed to
			the decline.
			Water
			discharge
			decreased
			more than
			water
			withdrawn due
			to increased
			water recycling
			for irrigation
			and product
			incorporation.
			Anticipated is a
			gradual
			decrease in
			water discharge
			in alignment
			with reduced
			water
			withdrawn.
			Water-smart
			technologies,
			optimized
			processes, and
			sustained water
			recycling efforts
			will facilitate this
			transition.
			Consistently
			applied trend
			thresholds
			encompass
			anything over
			S. 19 a mily 0 voi

						+/- 5% as 'Higher'/'Lower' YoY, and anything exceeding +/- 30% as 'Much higher'/'Much lower'
Total consumpti on	1,839	About the same	Other, please specify combination of Water withdrawn and Water discharge trends	Lower	Other, please specify combination of Water withdrawn and Water discharge trends	"0.7% decrease compared to 2021. Water consumption is calculated as per the following formula: C = W - D Where, W= total withdrawals, D= total discharges, C= total consumption. Water storage on site is negligible. Trend in water consumption follows trends in both water withdrawn and water discharged, both of which were downwards, though water discharge decreased at a higher rate. We've seen only a slight decrease in water consumption

			1
			due to
			additional or
			intensified
			water recycling
			activities,
			specifically
			those where
			recycled water
			was used for
			irrigation
			instead of being
			discharged.
			In the future we
			expect water
			consumption to
			continuously
			-
			decrease
			following the
			expected
			decrease in
			water
			withdrawn. The
			key enabler
			envisioned are
			chilling
			technology that
			use minimal
			amount of
			water. Yet the
			rate or the
			decrease is
			expected to be
			lower than that
			of water
			withdrawn due
			to increased
			water
			consumption for
			being
			incorporate into
			product (e.g.
			modern oral) at
			certain facilities.
			Trend
			Hellu

		thresholds are
		applied
		consistently to
		all our
		businesses:
		anything over
		+/- 5% is
		'Higher'/'Lower'
		compared to
		the previous
		year, and
		anything +/-
		30% is 'Much
		higher'/'Much
		lower'."

W1.2d

(W1.2d) Indicate whether water is withdrawn from areas with water stress, provide the proportion, how it compares with the previous reporting year, and how it is forecasted to change.

	Withdraw als are from areas with water stress	% withdra wn from areas with water stress	Compari son with previous reporting year	Primary reason for comparison with previous reporting year	Five- year forec ast	Primary reason for forecast	Identificat ion tool	Please explain
Ro w 1	Yes	11-25	Lower	Increase/decr ease in efficiency	About the same	Investment in water-smart technology/pro cess	WRI Aqueduct	The percentage in 2022 is 14.1% vs 15.8% in 2021. The change in percentage is lower than 1.7pp (or 10.7%), thus the trend vs last year is classified as

				""lower"".
				Trend
				thresholds
				are applied
				consistently
				to all our
				businesses:
				anything
				over +/- 5%
				is
				'Higher'/'Lo
				wer'
				compared
				to the
				previous
				year, and
				anything +/-
				30% is
				'Much
				higher'/'Mu
				ch lower'.
				Defining
				facilities in
				water
				stress
				areas via
				WRI
				Aqueduct
				tool: To
				identify
				facilities
				located in
				water
				stress
				areas, we
				maintain
				the list of
				exact
				geographic
				al
				coordinates
				(latitude,
				longitude)
				ofour
				Operations

				sites
				(factories
				and green
				leaf
				threshing
				plants)
				based on
				the
				information
				from local
				sites' teams
				via our
				environmen
				tal reporting
				system.
				The
				information
				is updated
				annually.
				The same
				environmen
				tal reporting
				system
				(Credit360)
				is used to
				collect
				information
				on water
				withdrawal
				volumes by
				each of the
				facilities.
				We define
				facilities as
				being in
				'water
				stress' zone
				as per WRI
				Aqueduct
				map using
				the
				aforementio
				ned
				geographic
				al

				coordinates
				. Our
				approach is
				based on
				the default
				scheme for
				baseline
				water
				stress and
				selecting
				the sites in
				the
				"Extremely
				High" or
				"High"
				zone, i.e.
				equals or
				exceeds
				40%, as
				recommend
				ed by the
				CDP
				guideline.
				Offices,
				warehouse
				s and other
				locations
				are out of
				scope of
				the
				mapping
				due to
				being non-
				material
				compared
				to
				Operations
				in terms of
				water use.
				WRI
				Aqueduct
				tool also
				allows us to
				identify
				water
				basins for

				the
				locations of
				each of our
				facilities.
				lacinites.
				In 2022
				In 2022
				through the
				mapping
				with WRI
				Aqueduct
				we
				identified
				16
				operations
				sites in 12
				countries
				as being in
				water
				stress zone
				(vs 17
				operations
				sites in 13
				countires).
				The change
				is due to
				discontinuin
				g
				operations
				in Iran.
				Drivers of
				the
				changes:
				total water
				withdrawn
				across BAT
				reduced in
				2021 by
				6.9% vs
				2021 (3498
				megalitres
				in 2022 vs
				3760
				megalitres
				in 2021).
				Meanwhile

				water
				withdrawn
				at our
				facilities in
				water
				stressed
				areas
				decreased
				at higher
				rate, by
				16.9% (494
				megalitres
				in 2021 vs
				594
				megalitres
				in 2021).
				The
				decrease in
				water
				withdrawal
				across the
				Group was
				driven by
				smart water
				technology
				and water
				efficiency
				projects at
				our
				Operations
				sites and
				increased
				water
				recycling as
				well as
				reduced
				production
				output and
				closure of
				business at
				certain
				geographie
				s. The
				decrease in
				water
				withdrawal
				withdrawar

				for facilities
				in water
				stress zone
				was driven
				mainly by
				water
				saving
				technology
				and
				processes,
				specifically
				improved
				control over
				water
				usage
				through
				additional
				metering in
				Venezuela,
				optimized
				irrigation on
				site in
				Uzbekistan
				and water
				recycling
				initiatives in
				Mexico
				allowing to
				replace
				fresh water
				with
				recycled
				water.
				Further,
				there was a
				divestment
				in Iran.
				Future
				trend: In the
				future we
				expect %
				withdrawn
				from
				stressed
				areas to be

				about the
				same. We
				focus on
				water
				withdrawal
				reduction to
				meet our
				target (-
				35% vs
				2017 by
				2025) and
				go beyond
				expecting
				the facilities
				in water
				stress
				areas to
				make
				proportionat
				е
				contribution
				, subject to
				certain year
				on year
				fluctuations
				and
				redistributio
				n of
				production
				volumes.

W-FB1.2e/W-AC1.2e

(W-FB1.2e/W-AC1.2e) For each commodity reported in question W-FB1.1a/W-AC1.1a, do you know the proportion that is produced/sourced from areas with water stress?

Agricultural commodities	The proportion of this commodity produced in areas with water stress is known	The proportion of this commodity sourced from areas with water stress is known	Please explain
Tobacco	Not applicable	Yes	BAT does not own tobacco farms and does not produce tobacco, thus the answer in the 2nd column is not applicable. For tobacco sourced from suppliers, we have mapped

	the geographical coordinates of locations
	from where it is sourced by using WRI
	Aqueduct tool (baseline water stress) to
	identify sites in areas with higher risk of
	water stress. In 2022, mapping identified
	that some of our tobacco sourcing areas in
	18 countries - including India, Chile and
	Turkey - are located in water-stressed
	areas. 18.3% of the tobacco we purchased
	in 2022 originated from areas designated as
	water-stressed.

W-FB1.2g/W-AC1.2g

(W-FB1.2g/W-AC1.2g) What proportion of the sourced agricultural commodities reported in W-FB1.1a/W-AC1.1a originate from areas with water stress?

Agricultural commodities	% of total agricultural commodity sourced from areas with water stress	Please explain
Tobacco	11-25	In 2022 BAT had 20.7% of the tobacco volume sourced from water stressed areas, staying within the same band as in 2020 and 2021. The water stress locations were mapped through the use of WRI Aqueduct Water Tool, which is done in an annual base. In the future we expect the percentage of tobacco sourced from water stressed areas to reduce or remain the same. In this sense we perform tests and research in order to introduce our directly contracted farmers with best and more efficient alternatives, as an example we are introducing drip irrigation technology in seven countries. These include Brazil, Mexico and Pakistan, with upcoming trials planned for the next crop cycle in three more countries. This specific irrigation system has been shown to increase water-usage efficiency by up to 90%, as well as reducing soil erosion and salination, ultimately boosting yields. So far, no real impacts in the tobacco leaf supply chain but depending on climate change risks materialization in a longer-term scenario above 2C (between now and 2050) we may need to revisit tobacco sourcing locations.

W1.2h

	Relevanc e	Volume (megaliters/yea r)		Primary reason for comparison with previous reporting year	Please explain
Fresh surface water, including rainwater, water from wetlands, rivers, and lakes	Relevant	46	Lower	Increase/decreas e in business activity	Fresh surface water constitutes only 1% of our water supply. We track water sources globally and measure volumes through metering. In 2022, usage decreased to 46 ML compared to 49 ML in 2021 (-6%). This decrease is attributed to lawn watering optimization in Uzbekistan, reduced water needs in a Brazilian facility, and the closure of a US facility using surface water in the latter half of 2022. Moving forward, we aim to minimize surface water intake, except for harvested rainwater, which accounted for 48% of our fresh surface water in 2022. Rainwater

(W1.2h) Provide total water withdrawal data by source.

Ι.

					harvesting reduces peak demands, preserves treated water for other uses, and mitigates stormwater runoff, making it environmentally beneficial. Our trend thresholds classify differences of +/- 5% as 'Higher' or 'Lower', and anything exceeding +/- 30% as 'Much higher' or 'Much lower'.
Brackish surface water/Seawater	Not relevant				We do not use brackish water in our manufacturing process because of concerns that brackish water may adversely impact the quality of our product, thus failing to meet consumer expectations. We do not expect brackish water to be relevant in the future.
Groundwater – renewable	Relevant	1,200	Lower	Increase/decreas e in efficiency	Groundwater supplies 34% of our water, and we comply with local regulations for authorized sources. We track

	water sources
	globally and
	measure volumes
	through metering
	or estimation
	based on
	equipment needs.
	In 2022,
	groundwater
	usage decreased
	to 1200 ML
	compared to 1396
	ML in 2021 (-
	14%). This
	reduction is
	attributed to
	measures such as
	improved
	metering, water
	recycling projects,
	smart HVAC
	systems, and
	optimized water
	use. Divestments
	in Brazil and
	Indonesia also
	affected
	groundwater
	usage.
	Over the next 5
	years, we
	anticipate a
	continuous
	decrease in
	groundwater
	usage through
	smart water
	technologies,
	efficiency
	measures,
	maintenance
	improvements,
	and minimizing
	water losses
	Our trend
	thresholds

			classify differences of +/- 5% as 'Higher' or 'Lower', and anything exceeding +/- 30% as 'Much higher' or 'Much lower'
Groundwater – non-renewable	Not relevant		We do not use non-renewable groundwater. Sustainable supply of water is crucial for our operations, thus before developing or using a source of groundwater, research is done to ensure that underground water level is stable, and water withdrawn is easily replenished. This is crucial for both continuity of operations and minimizing environmental impact of our operations. We do not anticipate non-renewable groundwater to be relevant in the future.
Produced/Entraine d water	Not relevant		As per the specifics of our manufacturing process, there are no major processes

Third party	Relevant	2,252	About the	Increase/decreas	associated with water generation. On top, we cannot use produced water in our manufacturing process because of concerns that produced/entraine d water may adversely impact the quality of our product, thus failing to meet consumer expectations. We do not expect produced/ entrained water to be relevant in the future. Municipal water
sources		2,232	same	e in efficiency	accounts for 64% of our water withdrawal. Global reporting units document all water sources and volumes, aggregated in an online reporting system (Credit360). Municipal water volumes are mainly based on internal measurements or supplier bills. Small offices estimate usage based on headcount or occupied area.

		The decrease to
		2,252 ML in 2022
		from 2,315 ML in
		2021 (-3%) is due
		to water-saving
		initiatives at sites
		reliant on
		municipal water.
		These include
		water loss
		analysis,
		minimizing losses,
		adopting water-
		saving technology
		for utilities, social
		purposes, and
		irrigation, and
		increased water
		recycling.
		However, this was
		partially offset by
		production
		increases at sites
		using third-party
		water or switching
		to other sources.
		We expect water
		supplied by third
		parties to remain
		the primary
		source, with
		volumes
		continuously
		decreasing in the
		next 5 years.
		Trend thresholds:
		+/- 5% is
		'Higher'/'Lower',
		and +/- 30% is
		'Much
		higher'/'Much
		lower'.

W1.2i

(W1.2i) Provide total water discharge data by destination.

	Relevance	Volume (megaliters/year)		Primary reason for comparison with previous reporting year	Please explain
Fresh surface water	Relevant	195	Much lower	Increase/decrease in efficiency	Discharge to fresh surface water is relevant as 12% of water is discharged to this destination. Units report destinations of water discharge & respective volumes in our online reporting system (Credit360). Volumes of water discharge to surface water are based on internal metering or estimates based on volumes of water withdrawn & consumption in processes. The decrease to 195 ML in 2022 vs 233 ML in 2021 is due to reduction in water withdrawal through water efficiency improvement & increased water recycling at several sites having surface

					water as water
					discharge
					destination, such
					as Nigeria &
					Argentina. Sites
					are required to
					ensure the water
					is treated so that
					iťs quality,
					temperature &
					other parameters
					are in line with
					applicable local
					regulations. In
					the next 5 years
					water discharge
					to fresh surface
					water is expected
					to decrease in
					line with overall
					water discharged
					volume. Trend thresholds: over
					+/- 5% is
					'Higher'/'Lower'
					vs previous year,
					over +/-30% is
					'Much
					higher'/'Much
					lower'.
Brackish	Relevant	22	Much higher	Facility expansion	Discharge to
surface	rtorortarit		ing	r donity expandion	brackish surface
water/seawater					water is minor,
					yet relevant since
					1% of water is
					discharged to
					this destination.
					The increase to
					22 in 2022 vs 7
					megaliters in
					2021 (+241%) is
					driven by
					increased
					discharge to

		seawater by our
		facility in Cuba
		upon its
		relocation and
		expansion.
		Our units report
		destinations of
		water discharge
		and respective
		volumes in global
		on-line reporting
		tool. Volumes of
		water discharge
		to surface water
		are based on
		internal metering
		or estimates
		based on
		volumes of water
		withdrawn and
		consumption in
		processes.
		Whenever
		discharge to
		discharge to brackish surface
		-
		brackish surface
		brackish surface water is done,
		brackish surface water is done, sites are required
		brackish surface water is done, sites are required to ensure the water is treated
		brackish surface water is done, sites are required to ensure the water is treated so that its quality,
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature &
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters are in line with
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters are in line with applicable local
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters are in line with
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters are in line with applicable local regulations.
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters are in line with applicable local regulations.
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters are in line with applicable local regulations. In the future (next 5 years) we
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters are in line with applicable local regulations. In the future (next 5 years) we aim to reduce
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters are in line with applicable local regulations. In the future (next 5 years) we aim to reduce water discharge
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters are in line with applicable local regulations. In the future (next 5 years) we aim to reduce water discharge to brackish
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters are in line with applicable local regulations. In the future (next 5 years) we aim to reduce water discharge
		brackish surface water is done, sites are required to ensure the water is treated so that its quality, temperature & other parameters are in line with applicable local regulations. In the future (next 5 years) we aim to reduce water discharge to brackish

					over +/- 5% is
					'Higher'/'Lower'
					vs previous year,
					over +/-30% is
					'Much
					higher'/'Much
					lower.
Groundwater	Relevant	28	About the	Increase/decrease	Discharge to
			same	in business activity	groundwater is
					minor, yet
					relevant since
					2% of water is
					discharged to
					this destination.
					The increase to
					28 megaliters in
					2022 vs 27
					megaliters in
					2021 (+4%) is
					driven by
					increased water
					withdrawal &
					water discharge
					by our facilities in
					Sudan where
					construction
					works are under
					way.
					Our units as a st
					Our units report
					destinations of
					water discharge
					and respective
					volumes in our
					global online
					reporting system
					(Credit 360).
					Volumes of water
					discharged to
					groundwater are
					estimated based
					on volumes of
					water withdrawn
					and consumption

					in processes. Whenever discharge to groundwater is done, sites are required to ensure the water is treated so that it's quality, temperature and other parameters
					are in line with applicable local regulations. In the future (next 5 years) we expect the volume water discharge to groundwater to stay about the same. Trend thresholds: over +/- 5% is 'Higher'/'Lower' vs previous year, over +/-30% is 'Much higher'/'Much
Third-party destinations	Relevant	1,414	Lower	Increase/decrease in efficiency	lower'. This is the main destination for 85% of our water discharge. Units report discharge destinations and volumes in our online reporting system (Credit360). Discharge to municipality/3rd party are based

		on internal	
		metering, bills, or	
		estimates as per	
		volumes of water	
		withdrawn and	
		consumption in	
		processes. 2022:	
		1414 ML vs	
		2021: 1640 ML	
		Reduction (-14%)	
		due to water-	
		saving tech,	
		efficiency, lower	
		output. BAT has	
		reduced supply	
		needs and	
		discharged	
		volumes on site.	
		Initiatives that	
		influenced water	
		discharge include	
		optimizing water	
		use, cleaning,	
		recycling at	
		factories and	
		GLTs. Social	
		needs and	
		cleaning had	
		biggest impact.	
		Future: major	
		discharge	
		destination,	
		expect gradual	
		volume decrease	
		in 5 years. Trend	
		thresholds: +/-5%	
		is	
		'Higher'/'Lower',	
		+/-30% is 'Much	
		higher'/'Much	
		lower'.	

W1.2j

(W1.2j) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

British American Tobacco CDP Water Security Questionnaire 2023 Thursday, July 27, 2023

	Releva nce of treatme nt level to dischar ge	Volume (megaliters/y ear)	Compari son of treated volume with previous reporting year	Primary reason for comparison with previous reporting year	% of your sites/facilities/oper ations this volume applies to	Please explain
Tertiary treatment	Relevan t	144	Much lower	Investment in water-smart technology/pro cess	11-20	Relevance: Tertiary water treatment is relevant since 8.7% of water discharged is treated to this highest level. Tertiary treatment is done at 20% of our operations sites (factories and green leaf threshing plants), where the % of water treated to such extent varies from 10 to 100%.Tertiary treatment is done whenever required by legislation and if discharge to municipality/3r d party is not possible, in most cases for discharge to surface water. Quality

			water (e.g.,
			BOD/COD,
			pH, harmful
			substances,
			etc.) is
			periodically
			controlled as
			per applicable
			regulations by
			sampling
			analysis
			(mostly by
			third party
			laboratories).
			BAT complies
			with all
			applicable
			international,
			national and
			sub-national
			regulatory
			standards
			required by
			the local and
			national water
			bodies and
			authorities
			relevant to
			each BAT
			facility
			Change in
			volume: The
			amount of
			water subject
			to tertiary
			treatment
			showed
			decrease (-
			42%) vs 247
			in 2021. The
			decrease is
			driven by
			change in
			water
			management

		practices and
		significant
		increase in
		water
		recycling at
		several of our
		facilities (e.g.
		Nigeria)
		reducing the
		amount of
		water
		discharged.
		Our definition
		for change:
		Trend
		thresholds are
		applied
		consistently to
		all our
		businesses:
		anything over
		+/- 5% is
		'Higher'/'Lowe
		r' compared to
		the previous
		year, and
		anything +/-
		30% is 'Much
		higher'/'Much
		lower'.
		Anticipated
		future trend:
		In the future
		we expect the
		amount of
		discharged
		water subject
		to tertiary
		treatment to
		remain at the
		same level as
		no significant
		alterations are
		being planned

						for the production processes.
Seconda ry treatment	Relevan t	294	Lower	Increase/decre ase in efficiency	21-30	production
						and/or if discharge to municipality/3r d party is not possible. Quality of discharged water (e.g.,

	1		BOD/COD,
			pH, harmful
			substances,
			etc.) is
			periodically
			controlled as
			per applicable
			regulations by
			sampling
			analysis
			(mostly by
			third party
			laboratories). BAT aims to
			comply with
			all applicable
			international,
			national and sub-national
			regulatory
			standards
			required by
			the local and
			national water
			bodies and
			authorities
			relevant to
			each BAT
			facility
			Change in
			volume: The
			amount of
			water subject
			to secondary
			treatment is
			about the
			same (-10%)
			vs 325 in
			2021. The
			change is
			driven by
			decrease of
			water
			withdrawn,
			hence water

			11 I
			discharge, as
			well as shift
			from
			secondary to
			tertiary water
			treatment at
			some of our
			facilities, e.g.
			Bangladesh
			GLT.
			Our definition
			for change:
			Trend
			thresholds are
			applied
			consistently to
			all our
			businesses:
			anything over
			+/- 5% is
			'Higher'/'Lowe
			r' compared to
			the previous
			year, and
			anything +/-
			30% is 'Much
			higher'/'Much
			lower'.
			Anticipated
			future trend:
			In the future
			we expect the
			amount of
			discharged
			water subject
			to secondary
			treatment to
			remain at the
			same level or
			slightly
			increase since
			no significant
			alterations are
			being planned

British American Tobacco CDP Water Security Questionnaire 2023 Thursday, July 27, 2023

					44.00	for the production processes, while some water may be redirected from primary treatment only to secondary treatment.
Primary treatment only	Relevan t	29	Lower	Increase/decre ase in business activity	11-20	Relevance: Primary water treatment only is relevant for us, though only a minor amount of water discharged (1.8%) is treated to this level only.Primary treatment only is done at 12% of our operations sites (factories and green leaf threshing plants), where the % of water treated to such extent varies from 1,3 to 97%, as well as at a few offices and warehouses. Primary treatment only is done in case no higher level of

			treatment is
			required by
			regulations.Q
			uality of
			discharged
			water (e.g.,
			BOD/COD,
			pH, harmful
			substances,
			etc.) is
			periodically
			controlled as
			per applicable
			regulations by
			sampling
			analysis
			(mostly by
			third party
			laboratories).
			Oh e a a a lia
			Change in volume: The
			amount of
			water subject
			to primary treatment only
			decreased (-
			24%) vs 38 in
			2021. The
			decrease is
			driven by
			decrease in
			water needs
			by facilities
			doing primary
			water
			treatment
			only, hence
			decrease in
			amounts of
			water
			withdrawn and
			discharged.
			Our definition
			for change:

						Trend thresholds are applied consistently to all our businesses: anything over +/- 5% is 'Higher/'Lowe r' compared to the previous year, and anything +/- 30% is 'Much lower'. Anticipated future trend: lower'. Anticipated future trend: ln the future we expect the amount of discharged water subject to primary treatment only to decrease by arranging secondary treatment for water or redirecting this water to municipality/3r d party for treatment.
Discharg e to the natural environm ent without treatment	Relevan t	41	About the same	Increase/decre ase in business activity	1-10	Relevance: Discharge of water to the natural environment is relevant for us, though only a minor amount of

				water
				discharged
				(2.5%) as
				such.Water is
				discharged
				without
				treatment at
				6% of our
				operations
				sites (factories
				and green leaf
				threshing
				plants), where
				the % of water
				treated to
				such extent
				varies from 3
				to 100%.
				Such
				discharge is
				done only in
				case it is
				allowed by
				legislation for
				water upon
				certain types
				of uses (e.g.
				cooling).Qualit
				y of
				discharged
				water (e.g.,
				BOD/COD,
				pH, harmful
				substances,
				etc.) is
				periodically
				controlled as
				per applicable
				regulations by
				sampling
				analysis
				(mostly by
				third party
				laboratories).
				BAT Group
				companies
L	1			

			are
			responsible
			for complying
			with all
			applicable
			regulatory
			standards
			required by
			the local and
			national water
			bodies and
			authorities
			relevant to
			each BAT
			facility
			Change in
			volume: The
			amount of
			water
			discharged
			without
			treatment
			showed
			increase
			(+4%) vs 39 in
			2021. The
			increase is
			driven by a
			increase in
			water used by
			one of our
			facilities using
			river water for
			cooling
			compressors
			and another
			facility going
			through
			expansion
			and
			construction
			works. The
			facility
			withdraws
			water from the

		river and
		discharges
		water of the
		same quality,
		but at slightly
		higher
		temperature.
		Our definition
		for change:
		Trend
		thresholds are
		applied
		consistently to
		all our
		businesses:
		anything over
		+/- 5% is
		'Higher'/'Lowe
		r' compared to
		the previous
		year, and
		anything +/-
		30% is 'Much
		higher'/'Much
		lower'.
		Anticipated
		future trend:
		In the future
		we expect the
		amount of
		water
		discharged
		without
		treatment to
		decrease. We
		are looking for
		opportunities
		to connect to
		municipal/3rd
		party sewers
		and plan
		installation of
		effluent

						treatment plants.
Discharg e to a third party without treatment	Relevan t	1,130	Lower	Increase/decre ase in efficiency	61-70	Relevance: Discharge of water to 3rd party (e.g. municipality) is relevant for us, and its the option applied to over the two thirds (68.1%) of discharged water. The amount of water discharge to 3rd party without treatment decreased (- 10%) vs 1258 in 2021, mostly in line with decrease in total water discharge. The option is exercised for factories and green leaf threshing plants located within the boundaries of the cities and industrial complexes that have connection to municipal water sewers as well as in rented offices.

			Water is
			discharged to
			3rd party or
			municipality
			without
			treatment by
			67% of our
			operations
			sites (factories
			and green leaf
			threshing
			plants), where
			the % of water
			discharged to
			municipality
			without
			treatment to
			such extent
			varies from 2
			to 100%, as
			well as by
			most of our
			offices, R&D
			and
			warehousing
			locations.
			Such
			discharge is in
			line with
			applicable
			legislation and
			subject to all
			the required
			authorizations
			and
			agreements
			with 3rd party.
			BAT Group
			companies
			are
			responsible
			for complying
			with all
			applicable
			regulatory
			standards
			stanualus

			required by
			the local and
			national water
			bodies and
			authorities
			relevant to
			each BAT
			facility
			Treatment
			applied by
			third party:
			municipal
			sewage water
			treatment
			plants apply
			secondary
			treatment in
			most cases
			acting in line
			with local
			water
			regulations.
			Depending on
			the
			geography,
			information on
			their
			compliance
			may be
			available
			publicly or not.
			Change in
			volume: The
			decrease is
			driven by
			overall
			decrease in
			water
			withdrawn and
			hence water
			discharge.
			Our definition
			for change:
			0-

				Trend
				thresholds are
				applied
				consistently to
				all our
				businesses:
				anything over
				+/- 5% is
				'Higher'/'Lowe
				r' compared to
				the previous
				year, and
				anything +/-
				30% is 'Much
				higher'/'Much
				lower'.
				Anticipated
				future trend:
				In the future
				we expect the
				amount of
				water
				discharged
				under such
				option to
				increase due
				to improved
				municipal
				infrastructure
				at the
				locations
				where we
				operate.
Other	Not			Other
	relevant			treatment
				category is
				not relevant
				for us as we
				don't
				discharge
				water using
				any specific
				treatment
				techniques

			that cannot be
			described as
			either primary,
			secondary, or
			tertiary water
			treatment.
			Anticipated
			future trend:
			In the future
			we expect this
			category to
			remain not
			relevant as no
			significant
			alterations are
			being planned
			for the
			production
			processes.

W1.2k

(W1.2k) Provide details of your organization's emissions of nitrates, phosphates, pesticides, and other priority substances to water in the reporting year.

	Emissions to water in the reporting year (metric tonnes)	Category(ies) of substances included	List the specific substances included	Please explain
Row 1	0	Nitrates Phosphates Pesticides Priority substances listed under the EU Water Framework Directive	45 priority substances as per the list of priority substances as defined in Article 2(30) of Directive 2000/60/EC of the European Parliament and of the Council as well as other nitrates, pesticides and phosphates.	Across the Group, we track water discharge destination, treatment method, quantity and quality. In 2022, we performed a screening for priority substances and pesticides, phosphates and nitrates. 100% of our operational sites reported no process use of these substances, and 38% reported not using them in any on- site ancillary or support services. BAT operates control measures globally in line with its Group procedures for hazardous substances management designed to avoid any

	ι	uncontrolled emissions to water,
	s	soil or groundwater across its
	c	operations – including for ancillary
	a	and support processes.

W1.3

(W1.3) Provide a figure for your organization's total water withdrawal efficiency.

	Revenue	Total water withdrawal volume (megaliters)	Total water withdrawal efficiency	Anticipated forward trend
Row 1	27,654,776,658	3,498,460	7,904.8428903003	In the future we expect a gradual decrease of the parameter in line with expected decrease of water withdrawn. We have set a target to decrease water withdrawn by 35% (vs 2017 baseline) by 2025 and are on track to meet it, while gradually reducing water withdrawal in direct operations year on year.

W-FB1.3/W-AC1.3

(W-FB1.3/W-AC1.3) Do you collect/calculate water intensity for each commodity reported in question W-FB1.1a/W-AC1.1a?

Agricultural commodities	Water intensity information for this produced commodity is collected/calculated	Water intensity information for this sourced commodity is collected/calculated	Please explain
Tobacco	Not applicable	Yes	BAT annually collects the information on the amount of water used by tobacco farms from where we source the tobacco via questionnaires. The data cover water used for seedling production, soil preparation, transplanting, plantation development and overall water withdrawn. The source is the BAT Thrive Program, which is our sustainable agriculture and farmer livelihoods program for our strategic suppliers worldwide

(covering approximately	
183,000+ farmers in 2022,	
supplying us with around 84%	of
our total tobacco leaf	
purchases).	
The Loc Mathematical Action	
The key indicators we look at	
are:	
Soil and water management:	
percentage of total farm land	
with appropriate best practice	
soil and water management	
plans implemented	
Water use: consumption per	
hectare	
We also collect information on	
the remaining 16% via the	
Sustainable Tobacco	
Programme.	
The data on water intensity are	÷
not disclosed publicly. Only ou	r
strategic approach is reported	in
our Sustainability Report.	
In terms of future trends and	
anticipating these and the	
continued challenges with wate	r
scarcity in the areas we source	;
and grow tobacco, further	
programmes on water reductio	n
and engagement with local	
communities is important.	
With this in mind, we'll continue	Э
to monitor annually the	
proportion of tobacco crops in	
areas with higher risk for water	
stress and we are actively	
looking at ways to work with th	e
directly contracted farmers to	2
reduce water usage. Our Globa	al
Leaf Agronomy Development	
Centre is developing the use o	ł
drip irrigation and this	
technology driven approach ,	
where implemented, is leading	

	to increases in water efficiency
	in the near future, reducing the
	volume of water per irrigated
	hectare.
	They are also testing the use of
	soil sensor in order to increase
	water efficiency in irrigated
	areas, and very valuable results
	were already received in trials
	conducted in Mexico, with
	around 27% reduction in water
	intensity compared to the
	current irrigation package.
	Another important contribution in
	2022 is the development of a
	water methodology protocol for
	measuring water used in the
	field. This methodology was
	validated by Peterson company,
	and it includes all types of
	irrigation system, in order to
	standardize the water usage
	measurement in all BAT
	operations, bringing higher
	accuracy on data collection and
	also for glidepath development
	on water reduction. Our target is
	to achieve 100% of the markets
	implementing the water
	measurement protocol until
	2024.

W-FB1.3b/W-AC1.3b

(W-FB1.3b/W-AC1.3b) Provide water intensity information for each of the agricultural commodities identified in W-FB1.3/W-AC1.3 that you source.

Agricultural commodities Tobacco Water intensity value (m3/denominator) 326

Numerator: Water aspect

British American Tobacco CDP Water Security Questionnaire 2023 Thursday, July 27, 2023

Total water withdrawals

Denominator

Tons

Comparison with previous reporting year

Higher

Please explain

Key priority: water usage is closely monitored with key suppliers, incl. forecast planning to increase the use of more efficient irrigation systems & reduce water consumed per irrigated hectare (ha) & per ton of tobacco. "Thrive" is used to monitor that BAT's directly contracted farmers & those of strategic 3rd party suppliers have details about water consumed at each crop stage (seedbeds, soils preparation & crop development) & for each irrigation system. From total monitored, 32.5% are irrigated & 67.5% are rainfed. Water intensity value is total water withdrawn (m3) divided by tons of tobacco. In 2022 water intensity was 326 m3/tons, small change vs 2021 (283.7 m3/tons). This is due to normal variations in weather patterns in the growing regions, mainly due to less rain in some key countries but also because of volume footprint variation. Total water consumption has decreased from 2022 compared to 2021. Internally, we track not only water intensity per tons of tobacco, but also water intensity per irrigated area, (m3/irrigated ha). This is used for monitoring water efficiency, understanding the trends & their drivers for further engagement to improve water efficiency. Special focus is made on water use by suppliers that provide tobacco from water stressed areas. We work closely with our main tobacco suppliers to educate them on water saving practices & encourage technical improvements for water saving. Future: we expect to continue improving the data accuracy, to develop more detailed plans to reduce the water intensity of tobacco. As part of our strategy to reduce water use for crop irrigation, improve water efficiency & data accuracy, the global agronomy team put in place a study to measure & evaluate the methodology used to calculate the water consumption of the supplier's farmers. The study's conclusion will help to establish clear targets, with more accurate information. Additionally, we have already introduced drip irrigation technology to our directly contracted farmers in 7 countries, incl. Brazil, Mexico & Pakistan. Trials are planned for the next crop cycle in three more countries. Initial results have shown an increase in water-usage efficiency of between 25- 50% when compared to conventional irrigation system (furrow), as well as reducing soil erosion & salination, ultimately boosting yields. Expectation: next 10 years potentially reduce this intensity by about 10%, considering the estimated level of adoption of the above technology.

W1.4

(W1.4) Do any of your products contain substances classified as hazardous by a regulatory authority?

	Products contain hazardous substances	
Row 1	Yes	

W1.4a

(W1.4a) What percentage of your company's revenue is associated with products containing substances classified as hazardous by a regulatory authority?

Regulatory classification of hazardous substances		Please explain
Annex XVII of EU REACH Regulation	10-20	Our total Revenue for 2022 across all categories was £27,655bln. The hazardous substances noted in 1.4 is applicable to our new category product for Tobacco Heated Products, Vapour and Modern Oral. The revenue for 2022 for these categories was £2,894bln This amounts to 10.46%
Candidate List of Substances of Very High Concern for Authorisation above 0.1% by weight (EU Regulation)	10-20	Our total Revenue for 2022 across all categories was £27,655bln. The hazardous substances noted in 1.4 is applicable to our new category product for Tobacco Heated Products, Vapour and Modern Oral. The revenue for 2022 for these categories was £2,894bln This amounts to 10.46%
Annex XIV of UK REACH Regulation	10-20	Our total Revenue for 2022 across all categories was £27,655bln. The hazardous substances noted in 1.4 is applicable to our new category product for Tobacco Heated Products, Vapour and Modern Oral. The revenue for 2022 for these categories was £2,894bln This amounts to 10.46%
Candidate List of Substances of Very High Concern (UK Regulation)	10-20	Our total Revenue for 2022 across all categories was £27,655bln. The hazardous substances noted in 1.4 is applicable to our new category product for Tobacco Heated Products, Vapour and Modern Oral. The revenue for 2022 for these categories was £2,894bln This amounts to 10.46%

W1.5

(W1.5) Do you engage with your value chain on water-related issues?

Engagement

Suppliers	Yes
Other value chain partners (e.g., customers)	Yes

W1.5a

(W1.5a) Do you assess your suppliers according to their impact on water security?

Row 1

Assessment of supplier impact

Yes, we assess the impact of our suppliers

Considered in assessment

Basin status (e.g., water stress or access to WASH services) Supplier dependence on water Supplier impacts on water availability Supplier impacts on water quality

Number of suppliers identified as having a substantive impact 30

% of total suppliers identified as having a substantive impact 51-75

Please explain

Water risk assessment and addressing deficits from rainfall are central to our support for contracted farmers in water stewardship. We actively monitor the proportion of tobacco crops in areas with higher risk for water stress. We map tobacco supplier locations via the WRI Aqueduct Water Risk tool, this is incorporated into the industry-led Sustainable Tobacco Programme. Having this information, we also assess through thrive monitoring program where there is a dependency on water from rainfall or for the use of irrigation. From these 2 types of dependencies, we also monitor the intensity of water being consumed per ton of tobacco on an annual basis in order to assess the impact of suppliers in water security. Through Thrive program, we also assess the % of supplier's area that are following best practices on water & soil management plan implemented in order to avoid water pollution and promote its conservation. If there is any issue on this matter, an action plan should be developed.

W1.5b

(W1.5b) Do your suppliers have to meet water-related requirements as part of your organization's purchasing process?

		Suppliers have to meet specific water-related requirements	
F	Row 1	Yes, water-related requirements are included in our supplier contracts	

W1.5c

(W1.5c) Provide details of the water-related requirements that suppliers have to meet as part of your organization's purchasing process, and the compliance measures in place.

Water-related requirement Conducting water-related risk assessments on a regular basis (at least once annually)
% of suppliers with a substantive impact required to comply with this water- related requirement 100%
% of suppliers with a substantive impact in compliance with this water-related requirement 100%
Mechanisms for monitoring compliance with this water-related requirement Supplier self-assessment
Response to supplier non-compliance with this water-related requirement Retain and engage

Comment

In 2016 we launched a Sustainable Tobacco Program (STP), mandatory and applied for 100% of tobacco suppliers. This program was reviewed in 2019 and 2020, having a dedicated theme specifically to Water. All suppliers should: 1. describe their commitments and identified challenges related to water; 2. inform the amount of water withdrawn, the water stressed areas, source of water collection and basic water access. If the supplier is considered under water risk, should: 3. detail if identify, prioritize, respond and measure the challenges related to water quality and/or any other challenge related to water. Suppliers complete a self-assessment process every year and high risk suppliers will receive an in-depth assessment if their due diligence processes are not mature enough to mitigate this risk. In depth assessments deepen the understanding of the challenges and achievements in an identified area as well as enabling improvements to be made on priority sustainability topics.

Water-related requirement

Substituting hazardous substances with less harmful substances

% of suppliers with a substantive impact required to comply with this waterrelated requirement

100%

% of suppliers with a substantive impact in compliance with this water-related requirement

76-99

- Mechanisms for monitoring compliance with this water-related requirement Off-site third-party audit
- Response to supplier non-compliance with this water-related requirement Retain and engage

Comment

Following WHO/FAO guidelines on pesticide classification by hazard and CORESTA Guide N°27, BAT has program to eliminate HHPs, incl. active ingredients listed by Rotterdam, Stockholm Convention, Montreal Protocol, requiring all suppliers to annually cover:

• Acknowledge the receipt of the Leaf Suppliers Manual issued by BAT(contains the Agrochemicals and Formulations not to be used in tobacco);

• Submit the Agrochemical List, containing all the crop protection agents to be used in each step of the tobacco production;

• Submit the Agrochemicals Risk Assessment;

• BAT completes the Agrochemical Residues testing in the packed product.

In 2022, 100% of total tobacco purchased & tested were free of quantifiable levels of HHPs; we continue monitoring this target on annual basis to guarantee suppliers keep following the guidance. While the same standard applies to any tobacco consumed, the above figures do not contain US or exotic tobacco data, we are working to integrate those going forward.

W1.5d

(W1.5d) Provide details of any other water-related supplier engagement activity.

Type of engagement

Other

Details of engagement

Other, please specify

Onboarding & compliance- Inclusion of water stewardship and risk management in supplier selection mechanism. Requirement to adhere to our code of conduct regarding water stewardship and management

% of suppliers by number

76-99

% of suppliers with a substantive impact

76-99

Rationale for your engagement

BAT's Supplier Code of Conduct (SCoC) sets out the minimum standards we expect our suppliers to adhere to, regardless of the type of business, good or service supplied. It is an important governance framework allowing suppliers to benefit from our resources and experience, improve and achieve best practice standards. Suppliers are expected to meet the requirements of SCoC and this is incorporated into our contractual arrangements. Suppliers are expected to identify, understand and actively work towards avoiding, minimising and mitigating their associated impacts on the natural environment (but are not limited to) impacts relating to emissions to air, water, land and forests, use of materials, natural resource consumption and waste management practices. Where practicable, this should include establishing an environmental policy and management system. Aligning to the code is a critical part of supplier onboarding.

In addition to this BAT has set a suite of questions related to ESG that should be used for Procurement Strategic Sourcing since 2021. This would be applicable to ~99.5% of BAT Procurement Spend for Non-Tobacco Suppliers. The Questionnaire covers different ESG Focus Areas including water management which incorporates understanding of policies and activities suppliers are undertaking around water management and (if any) certifications from Alliance of Water Stewardship have been obtained.

Impact of the engagement and measures of success

The ESG supplier selection questionnaire was designed to raise the profile of ESG requirements by embedding them as a mandatory part of BAT's supplier selection process for strategic sourcing. This introduction has allowed us to engage more strongly with our suppliers during the commercial process and where appropriate drive improvement actions that can be embedded. For instance, in 2022, BAT has undertaken steps to establish baseline of our strategic board supplier's ESG maturity via the supplier selection process. Based on this, the group of suppliers detailed understanding of ESG credentials which includes water management metrics such as recycling and reduction rate via monthly engagement sessions. Strategic board suppliers are critical suppliers within paper and pulp sector that falls in category of Very High water impact activity group based on CDP Water Watch. This engagement has driven completion of LCA in 2022 for this group of suppliers. As a result, this information has influenced BAT sourcing decision to award contract to suppliers with least adverse impact on Water.

Comment

In 2023, BAT will work to expand water related assessments to a wider pool of suppliers to understand the level of risks and impact our value chain has on Water.

Type of engagement

Innovation & collaboration

Details of engagement

Educate suppliers about water stewardship and collaboration

% of suppliers by number

76-99

% of suppliers with a substantive impact

76-99

Rationale for your engagement

Our engagement with our tobacco suppliers is key, given that tobacco is an agricultural commodity and a cornerstone of our operations. While BAT does not own tobacco farms or directly employ farmers, we buy more than 400,000 tonnes of tobacco each year. Securing our supply of tobacco leaf for the future, coupled with our extensive agronomy support to contracted farmers, helps us ensure we have an agile, efficient, and reliable supply, with traceability down to the farm level. This means we can continue to meet consumer demand, while also enhancing the sustainability of rural communities and agriculture.

Impact of the engagement and measures of success

Water is one of the 8 focus areas of industry's Sustainable Tobacco Program (STP) which aims to have beneficial outcomes including enhance supplier water-use and efficiency and conservation. Since 2016 we have launched a Sustainable Tobacco Program (STP, mandatory and applied for 100% of tobacco suppliers. This program was reviewed during 2019 and 2020 and have a different approach. Now there is one theme dedicated specifically to Water. On this, all suppliers should: 1. describe their commitments and identified challenges related to water; 2. inform the amount of water withdrawn, the water stressed areas, source of water collection and basic water access. If the supplier is considered under water risk, should: 3. detail if identify, prioritize, respond and measure the challenges related to water quality and/or any other challenge related to water.

The key indicators under this related to water management are:

1/ Soil and water management: % of total farmland with appropriate best practice soil and water management plans implemented;

2/ Water use: consumption per hectare. To enable contracted farmers to meet our STP criteria we provide them with guidance and techniques on preserving soil & water health and reducing water use through new techniques and technologies.

Further, our Thrive Programme for major leaf suppliers has specific measure on "Training delivered in the reporting crop year"

In 2022, >129,000 farm attendances at farmer training sessions on best practice natural resource preservation, forest and soil management.

Under Thrive, and to further enhance engagement opportunities, we deliver training and share practice on natural resource preservation / environmental best practice (e.g. water, soil, forest management, biodiversity, etc).

The measure of success of this engagement is the improvement of supplier scores after each self-assessment. As a result of those activities we achieved 82% of tobacco hectares reported to have appropriate best practice soil and water management plans implemented in our directly contracted farmers and those of 3rd party strategic

suppliers, compared to 76% in 2021. We will continue measuring the effectiveness of our supplier engagement activities via increase coverage of best practices and also new technologies.

Comment

W1.5e

(W1.5e) Provide details of any water-related engagement activity with customers or other value chain partners.

Type of stakeholder

Customers

Type of engagement

Education / information sharing

Details of engagement

Run an engagement campaign to educate stakeholders about the impacts on water that (using) your products, goods, and/or services entail

Other, please specify

Collaborate with stakeholders on innovations to reduce water impacts in products and services

Rationale for your engagement

Cigarette butts are a source of marine (Araújo and Costa, 2019) and freshwater (Winton et al., 2020) pollution. As a large manufacturer of cigarettes, we are committed to work with consumers to enhance their understanding of the impact of butt littering and encourage responsible disposal. Butt littering is a behavioural choice, so our engagement has two aspects. Increase customer knowledge of the impacts of littering and use innovative methods to change behaviours and finally measure the impact of the initiative.

Our approach to tackling butt littering involves product innovation to reduce the environmental impact of filters, develop a group wide approach to educate customers on the impacts of butt littering and help provide disposal solutions. In 2022, we have developed a new butt littering toolkit that will be rolled out across BAT in 2023. This utilises learning from our existing initiatives to focus on approaches that have proved to be most effective and resonated best with consumers.

Impact of the engagement and measures of success

In 2022, we implemented butt littering initiatives campaigns across multiple countries, including Italy, Denmark, France, and Romania.In Italy, we collaborated with an NGO to conduct customer research aimed at understanding the behavioral reasons behind

littering. The research identified key factors such as lack of environmental sensitivity, awareness of damage caused, disposal options, and consequences for littering among smokers.

Based on these insights, we developed an awareness and behavior change campaign in Italy. As part of this initiative, over 50,000 pocket and reusable ashtrays made of recyclable plastic were distributed through volunteers and local tobacconist shops. This proactive step aimed to reduce the amount of butt littering. Furthermore, we engaged customers in the cities of Trieste, Salerno, Pescara, and Viareggio.

To measure the success of our engagement, we used satellite monitoring to assess the quantity of cigarette butt litter before, during, and after the implementation of our activities. The results were encouraging, with butt littering experiencing reductions of 51% in Trieste, 41% in Salerno, 31% in Pescara, and 53% in Viareggio.

These metrics directly reflect the impact of our engagement and serve as measures of success for our butt littering initiatives. By monitoring and quantifying the reduction in cigarette butt litter, we can evaluate the effectiveness of our campaigns, improving how we promote responsible disposal practices among smokers.

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts? No

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

	Water-related regulatory violations	Comment	
Row 1	No	BAT was not subject to any fines, enforcement orders or any other water related regulatory violations in 2022	

W3. Procedures

W3.1

(W3.1) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

	Identification and classification of potential water pollutants	How potential water pollutants are identified and classified
Row 1	Yes, we identify and classify our potential water pollutants	Through our GEHSMS aligned with ISO 14001, we have global standards and procedures for water management. The Global Water Management and Water and Wastewater standards include risk identification, assessment, prevention, spill prevention, and hazardous substance management to prevent water pollution. On-site wastewater is discharged according to local parameters, regulatory requirements, and GEHEMS internal standards. These standards are integrated into our factories' environmental management systems and validated locally annually, audited by Global EHS team. BAT identifies and classifies potential water pollutants using a workflow involving product safety, Leaf Sustainability, and other departments. Banned substances are listed, and alternative options are explored. Mitigations are adopted based on safety data sheets (SDS) & hazard statements. External assessments are commissioned when internal expertise is lacking. Controls include a list of banned substances, pollutant minimization strategies, and technical assistance to leaf farmers for proper agrochemical use & waste management. Engagement with suppliers and farmers ensures adherence to standard operating procedures and responsible practices. Our South Korea site recycled and reused 50% of total water withdrawn through a multi-stage treatment process. We employ measures to prevent water pollution, reduce chemical use, promote water reuse, and ensure proper waste management in tobacco growing and manufacturing processes.

W3.1a

(W3.1a) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities.

Water pollutant category Nitrates

Description of water pollutant and potential impacts

The negative environmental impact that may be caused by fertilisers is that the fertilisers may get into water courses and be washed into water bodies where they can cause intensive growth of algae thus changing the normal environment. Upon the end of life

cycle the algae decay, which is the process requiring much oxygen. This can result is depriving from oxygen other species that inhabit water bodies. The negative environmental impact that may be caused by pesticides and other agrochemical substances may be dangerous to the species inhabiting the areas where the agricultural activities are performed, and, if they get into watercourses, they may also affect the species inhabiting water bodies in a similar way as fertilizers. That is: if agrochemicals get into watercourses, they have the potential to cause algae blooms in localized areas around operations, which can be up to many meters of size (>10m) These algae blooms can starve the aquatic environment of oxygen, and adversely impact the local fish population.

Value chain stage

Direct operations Supply chain

Actions and procedures to minimize adverse impacts

Implementation of integrated solid waste management systems Provision of best practice instructions on product use Requirement for suppliers to comply with regulatory requirements

Please explain

In terms of agricultural practices, we engage with our directly contracted farmers and request them to participate in best practices implementation and participation in collection programmes to ensure proper end of life treatment (waste management). Our technical assistance team in the field, when visiting rural properties, inspect farmers' properties to verify how they are preparing and applying fertilizer according to recommendation and any other crop protection agents that are being utilized and all the products being used are following local regulations. Our research and development centres continually review and modify the plant so that they become less reliant on fertilizers and more resistant to disease.

The result of our approach can be seen on the % of hectarage with best practice applied to Soil and water management, which in 2022 represented 82% of total tobacco hectarage, increasing from 76% in 2021 and 67% in 2018.

Water pollutant category

Phosphates

Description of water pollutant and potential impacts

The negative environmental impact that may be caused by fertilizers is that the fertilizers may get into water courses and be washed into water bodies where they can cause intensive growth of algae thus changing the normal environment. Upon the end of life cycle the algae decay, which is the process requiring much oxygen. This can result is depriving from oxygen other species that inhabit water bodies. The negative environmental impact that may be caused by pesticides and other agrochemical substances may be dangerous to the species inhabiting the areas where the agricultural activities are performed, and, if they get into watercourses, they may also affect the

species inhabiting water bodies in a similar way as fertilizers. That is: if agrochemicals get into watercourses, they have the potential to cause algae blooms in localized areas around operations, which can be up to many meters of size (>10m) These algae blooms can starve the aquatic environment of oxygen, and adversely impact the local fish population.

Value chain stage

Direct operations Supply chain

Actions and procedures to minimize adverse impacts

Implementation of integrated solid waste management systems Provision of best practice instructions on product use Requirement for suppliers to comply with regulatory requirements

Please explain

In terms of agricultural practices, we engage with our directly contracted farmers and request them to participate in best practices implementation and participation in collection programmes to ensure proper end of life treatment (waste management). Our technical assistance team in the field, when visiting rural properties, inspect farmers' properties to verify how they are preparing and applying fertilizer according to recommendation and any other crop protection agents that are being utilized and all the products being used are following local regulations. Our research and development centres continually review and modify the plant so that they become less reliant on fertilizers and more resistant to disease.

The result of our approach can be seen on the % of hectarage with best practice applied to Soil and water management, which in 2022 represented 82% of total tobacco hectarage, increasing from 76% in 2021 and 67% in 2018.

Water pollutant category

Other synthetic organic compounds

Description of water pollutant and potential impacts

The negative environmental impact that may be caused by fertilizers is that the fertilizers may get into water courses and be washed into water bodies where they can cause intensive growth of algae thus changing the normal environment. Upon the end of life cycle the algae decay, which is the process requiring much oxygen. This can result is depriving from oxygen other species that inhabit water bodies. The negative environmental impact that may be caused by pesticides and other agrochemical substances may be dangerous to the species inhabiting the areas where the agricultural activities are performed, and, if they get into watercourses, they may also affect the species inhabiting water bodies in a similar way as fertilizers. That is: if agrochemicals get into watercourses, they have the potential to cause algae blooms in localized areas around operations, which can be up to many meters of size (>10m) These algae blooms can starve the aquatic environment of oxygen, and adversely impact the local fish population.

Value chain stage

Direct operations Supply chain

Actions and procedures to minimize adverse impacts

Implementation of integrated solid waste management systems Provision of best practice instructions on product use Requirement for suppliers to comply with regulatory requirements

Please explain

In terms of agricultural practices, we engage with our directly contracted farmers and request them to participate in best practices implementation and participation in collection programmes to ensure proper end of life treatment (waste management). Our technical assistance team in the field, when visiting rural properties, inspect farmers' properties to verify how they are preparing and applying fertilizer according to recommendation and any other crop protection agents that are being utilized and all the products being used are following local regulations. Our research and development centres continually review and modify the plant so that they become less reliant on fertilizers and more resistant to disease.

The result of our approach can be seen on the % of hectarage with best practice applied to Soil and water management, which in 2022 represented 82% of total tobacco hectarage, increasing from 76% in 2021 and 67% in 2018.

Water pollutant category

Pesticides

Description of water pollutant and potential impacts

The negative environmental impact that may be caused by pesticides and other agrochemical substances may be dangerous to the species inhabiting the areas where the agricultural activities are performed, and, if they get into watercourses, they may also affect the species inhabiting water bodies in a similar way as fertilizers. That is: if agrochemicals get into watercourses, they have the potential to cause algae blooms in localized areas around operations, which can be up to many meters of size (>10m) These algae blooms can starve the aquatic environment of oxygen, and adversely impact the local fish population. The success of our strategy to mitigate such impact is measured through the consistent maintenance of 100% compliance to regulatory standards, with no effluents exceeding toxicity, no agrochemicals packaging found out of its controlled disposal cabinet with restrict access control, etc.

Value chain stage

Direct operations Supply chain

Actions and procedures to minimize adverse impacts

Provision of best practice instructions on product use

Reduction or phase out of hazardous substances Requirement for suppliers to comply with regulatory requirements

Please explain

BAT is an active member of CORESTA's Agrochemicals Advisory Committee, promoting the alignment and guidelines across the Tobacco Industry. By following WHO/FAO guidelines on pesticide classification by hazard and CORESTA Guide N°27, BAT has programs to eliminate HHPs, including active ingredients listed by Rotterdam Convention, Stockholm Convention and Montreal Protocol. BAT's program require all suppliers to cover the following steps annually:

• Acknowledge the receipt of the Leaf Suppliers Manual latest version issued by BAT, which contains the Agrochemicals and Formulations not to be used in the tobacco production.

• Suppliers subsequently submit the Agrochemical List, containing all the crop protection agents to be used in each step of the tobacco production.

• They also submit the Agrochemicals Risk Assessment, by tobacco type.

• Last, to check compliance, BAT completes the Agrochemical Residues testing in the packed product as per Risk Assessment approved by BAT.

In 2022, 100% of total tobacco purchased and tested were free of quantifiable levels of HHPs; we continue monitoring this target on annual basis to guarantee suppliers keep following the guidance. While the same standard applies to any tobacco consumed within the US, the above figures do not contain US and exotic tobacco data and we are working to integrate those going forward.

W3.3

(W3.3) Does your organization undertake a water-related risk assessment?

Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Value chain stage Direct operations

Coverage

Full

Risk assessment procedure

Water risks are assessed in an environmental risk assessment

Frequency of assessment

More than once a year

How far into the future are risks considered?

More than 6 years

Type of tools and methods used

Tools on the market International methodologies and standards Databases

Tools and methods used

WRI Aqueduct Alliance for Water Stewardship Standard FAO/AQUASTAT Maplecroft Global Water Security Risk Index

Contextual issues considered

Water availability at a basin/catchment level Water quality at a basin/catchment level Stakeholder conflicts concerning water resources at a basin/catchment level Impact on human health Implications of water on your key commodities/raw materials Water regulatory frameworks Status of ecosystems and habitats Access to fully-functioning, safely managed WASH services for all employees Other, please specify Estimates of future potential regulatory changes and future changes in water availability

Stakeholders considered

Customers Employees Investors Local communities NGOs Regulators Suppliers Water utilities at a local level Other water users at the basin/catchment level

Comment

On an annual basis, using WRI Aqueduct tool, BAT assess water related risks, alongside other valuable inputs, as an example IPPC Climate Change Projections. Starting in 2020 our factories & GLTs started implementing the AWS standard 2.0. The Sustainability communities across the group continue to complete training & gap analysis are completed 12 months prior to certification dates for all relevant sites and continue to be completed as per our implementation schedule, with key insights and learnings shared across the group to relevant regional and local teams. We recognize that while we had been engaging with local stakeholders almost everywhere, we operate and while our operations are not water intensive, it's time to seek for credentials

to back any claims up. Our 2025 goal is for 100% of our Operations sites to be AWS certified, as of end of 2022, we have 36% of our operations sites certified and plan is for 70% to be certified by the end of 2023. SAFL (Sustainable Agriculture and Farmer Livelihoods) Programme within leaf, BAT measures the water consumption to grow the crop at all suppliers (farmers) from whom it buys tobacco also GLT sites and Cigarette Factories and more recently at New Categories production sites. We have commissioned a climate change study with external suppliers & completed TCFD 2 X scenarios, materiality risk mapping and analysis: physical risks for agriculture across a number of our leaf sourcing areas. The long-term scenario studies are not usually refreshed very often but provide the leaf growing team indication of the climate change affects that may affect water availability in growing regions. BAT continues to deep dive the study considering physical risks impacts, including changes in water availability. Studies consider water risk measuring tools/systems such as the ones above incorporate effects from climate change as proposed by the IPCC RCPs 2.6 to 8.5 & their potential effects in view of water related issues such as draughts and/or floods.

Value chain stage

Supply chain

Coverage

Full

Risk assessment procedure

Water risks are assessed in an environmental risk assessment

Frequency of assessment

More than once a year

How far into the future are risks considered?

More than 6 years

Type of tools and methods used

Tools on the market International methodologies and standards Databases

Tools and methods used

WRI Aqueduct Alliance for Water Stewardship Standard FAO/AQUASTAT Maplecroft Global Water Security Risk Index

Contextual issues considered

Water availability at a basin/catchment level Water quality at a basin/catchment level Stakeholder conflicts concerning water resources at a basin/catchment level Implications of water on your key commodities/raw materials

Water regulatory frameworks Status of ecosystems and habitats Access to fully-functioning, safely managed WASH services for all employees Other, please specify Estimates of future potential regulatory changes and future changes in water availability

Stakeholders considered

Customers Employees Investors Local communities NGOs Regulators Suppliers Water utilities at a local level Other water users at the basin/catchment level

Comment

On an annual basis, using WRI Aqueduct tool, BAT assess water related risks, alongside other valuable inputs, as an example IPPC Climate Change Projections. When looking at specific supply areas, With SAFL (Sustainable Agriculture and Farmer Livelihoods) Programme, BAT also measures the water consumption to grow the crop at all suppliers (farmers) from whom it buys tobacco. Other suppliers water efficiency and compliance is assessed on sample basis by the BAT Procurement Supplier Audit Program executed by a third-party audit company. A risk mapping of supplier issues is put together, and suppliers must re-establish compliance otherwise they might be eliminated from BAT's suppliers' base.

Value chain stage

Other stages of the value chain

Coverage

Partial

Risk assessment procedure

Water risks are assessed in an environmental risk assessment

Frequency of assessment

Annually

How far into the future are risks considered?

More than 6 years

Type of tools and methods used

Tools on the market International methodologies and standards

Databases

Tools and methods used

WRI Aqueduct Alliance for Water Stewardship Standard FAO/AQUASTAT Maplecroft Global Water Security Risk Index

Contextual issues considered

Water availability at a basin/catchment level Water quality at a basin/catchment level Stakeholder conflicts concerning water resources at a basin/catchment level Implications of water on your key commodities/raw materials Water regulatory frameworks Status of ecosystems and habitats Access to fully-functioning, safely managed WASH services for all employees Other, please specify Estimates of future potential regulatory changes and future changes in water availability

Stakeholders considered

Customers Employees Investors Local communities NGOs Regulators Suppliers Water utilities at a local level Other water users at the basin/catchment level

Comment

We continue to conduct Life Cycle Assessments of our products which include water footprint and correspond to a very interesting way to have insights not only for R&D but for marketing insights, inputs for consumer focus groups discussions and test how they perceive our products impacts and collect feedback.

W3.3b

(W3.3b) Describe your organization's process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

i	-	Explanation of stakeholders considered	Decision-making process for risk response
---	---	--	---

Row	As part of our risk	We reviewed and	Within our risk	The risk
1	assessment process, we	considered all	assessment processes	assessment
	use tools like WRI	relevant	we reviewed and	process follows 4
	Aqueduct, Alliance for Water	stakeholders and	considered all relevant	steps to inform
	Stewardship (AWS),	selected the	stakeholders and	internal decision-
	Maplecroft global water	following within	selected the following	making. 1. Risks
	security risk index, and	our risk	in our risk assessment	are identified and
	IPPC projections which help	assessment	for the following	rated at the local
	us understand water-related	processes for the	reasons: a) customers'	level based on
	risks. We consider indicators	following reasons:	expectations are	probability and
	from WRI to assess risk	a) Water	continually increasing	impact, following
	levels, considering the	availability is	with regarding the	threshold limits set
	significance of	essential for	products they	by the Finance
	manufacturing and GLT	operations, WASH	purchase, failure to	Department. Sites
	sites. Risks assessed	for employees and	respond to their	report ratings of
	include coastal and riverine	stakeholders, and	environmental	new or existing
	floods, droughts, baseline	growing raw	concerns can have a	risks and propose
	water stress, and water	materials. Any	negative impact in our	mitigation actions
	quality.	reduction or lack	business; b) All BAT	with completion
	We map our factories and	of water would	employees a key in	dates.2.
	GLTs using the WRI map	significantly affect	driving the	Ratification and
	and the default risk scheme,	our ability to	implementation of our	rectification of the
	reviewing it annually. Areas	operate	water initiatives which	business strategy:
	classified as extremely high	effectively; b)	support achieving our	New/changing
	or high risk in WRI are	Impact on human	targets and goals, and	water risks
	considered water risk areas.	health, in	cascade them to	presented to
	Offices and	alignment with	suppliers; c) investors	management board
	distribution/warehousing	applicable	have increased	due to dynamic
	locations are excluded	requirements and	concerns regarding	nature of risks &
	unless co-located with	regulations like the	water performance,	BAT's geographical
	Operations facilities.	EU directive	which if unaddressed	operations.
	In addition to assessment	98/83/EC. We	can translate in	Proposed
	tools, we consider	recognize that	financial risks; d) A lack	U U
	consultancy reports on	maintaining high	of understanding the	reviewed, approved
	climate change effects, site	water quality is	needs and requirement	and followed. This
	performance reports, data	crucial for	of our local	step occurs at least
	from farmers through our	manufacturing our	communities at a	twice a year or
	Sustainable Tobacco	products,	basin/catchment level	more if
	Program, internal self-	safeguarding the	can result in conflicts	necessary.3.
	assessment scores, audits,	health of workers,	over water resources,	Ratification and
	regulatory monitoring tools,	consumers,	especially in areas of	rectification of
	and lifecycle assessments.	farmers, and their	water scarcity etc; e)	business strategy:
	We also engage in TCFD	livelihoods. By	NGOs can offer	Dynamic water
	scenario risk mapping, water	prioritizing human	technical expertise that	risks and BAT's
	and physical risk analysis,	health, we aim to	can support the	geographical

erations prompt
sentation of new
changing risks to
management
ard. Proposed
igations are
iewed,
proved, and
owed up at least
nnually or as
eded. 4.
cking action
ns: Global risks
control teams
nitor progress of
e-level actions,
suring active
gration of risk
essment and
sistent risk
nagement.
nducted at least
nnually or as
eded to drive
oing progress.
k assessment
ers all countries
ere BAT
erates with
nership share ≥
%, ensuring
nprehensive
verage and
mission of
essments for
evant areas.
tcomes of the
assessment
de internal
cision-making,
abling informed
ions and
ategies to
igate identified
s and ensure
organization's

	understanding	ongoing progress
	current and future	and success.
	regulatory	
	frameworks to	
	ensure	
	compliance in our	
	operational areas.	

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of our value chain

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

The BAT Group follows a standardised methodology for risk management across the BAT Group, embedded at BAT Group, functional, direct-reporting business unit (DRBU) and individual market levels to identify, assess and monitor financial and non-financial risks faced at every level of the business. These risks encompass both direct operations and our supply/value chain. Risks are assessed biannually and prioritised at three levels by reference to their impact (high/medium/low) and likelihood (probable/possible/unlikely) as per our BAT Group Risk Management Manual (GRMM).

Substantive financial or strategic impact refers to the significant and meaningful effect that risks can have on the financial or strategic aspects of the business. Risks are assessed both quantitively and qualitatively using a Risk Impact Matrix set out in the GRMM. In financial (quantitative) terms, substantive financial or strategic impact is defined as an impact between £60mn & £120mn (low), between £120mn & £250mn (medium) and in excess of £250mn (high) on Operating Profit, Net Finance Cost or Operating Cash Flow (representing the impact in any single year). Strategic impact refers to such factors as reputational, safety, legal & environmental impacts which are also included within the Risk Impact Matrix and are considered within each risk assessment. These metrics apply to Group risks, with reducing thresholds set at functional & DRBU levels.

The time frame is used to consider the period over which the consequence of the risk, should it occur, impacts the business. Frequency of impact is considered through the assessment of the timeframe of each risk and reported in accordance with our GRMM, this is used to consider the period over which the consequences of the risk, should it occur, impacts the business.

Short-term, 0-2 yrs. The GRMM provides guidance of the assignment of a "Risk Time Frame". These are used to consider the period over which the consequence of the risk, should it occur, impacts the business. A short-term impact is defined as an 18-month time frame for business risks.

Medium-term, 2-5 yrs. The GRMM provides guidance of the assignment of a "Risk Time Frame". These are used to consider the period over which the consequence of the risk, should it occur, impacts the business. A medium-term impact is defined between 18 months and 5 years for business risks.

Long-term, 5-10 yrs. The GRMM provides guidance of the assignment of a "Risk Time Frame". These are used to consider the period over which the consequence of the risk, should it occur, impacts the business. A long-term impact is defined as more than 5 years for business risks.

Long-term risks could develop over several years after the initial event occurs, and therefore generally relate to strategic decisions. Short-term risks have their impact immediately after the event occurs & tend to cause disruption to normal operations. For example, the growth of illicit trade could be a long-term risk; the failure to achieve an expected price increase could be a short-term risk. Where a risk has a mixture of time frame the default definition should be the longest-term.

The Group maintains a climate change risk on the Group risk register. The risk sets out the impact on the Group to ensure robust processes are in place to manage transitional climate change risks (in compliance with the Green Finance Strategy published by the UK Government in July 2019 setting out disclosure expectations for listed companies in accordance with the TCFD recommendations). The Climate Change risk template (which is used during the risk assessment process to capture risk information, analysis, and record mitigation activities) specifically calls out transitional climate related risk factors, such as ESG matters influencing investor decisions, evolving climate change legislation and changes in Consumer behaviours & expectations related to environmental issues. These "Drivers" of the risk are factored into the Financial Impact Value, Likelihood (Probability) rating and ultimate Risk Score. Assigned mitigation activities are also logged against the risk & are tracked/monitored.

In addition to the above, the Group has embedded physical climate related risk factors into its business risk register (both at functional & at Group level) and its associated risk templates.

Work commenced H2 2022 to develop and establish a stand-alone ESG risk register, in addition to the existing business risk register. This will enable greater visibility of each ESG risk and associated risk mitigation activities. The ESG risk register will be finalised H1 2023 & the ESG risks will be reviewed bi-annually, in line with the Group's ERM methodology & enhanced GRMM. Moreover, each ESG risk will be linked to risks on the Group business risk register to ensure completeness & consistency throughout the assessment and reporting process. The risks identified in both the ESG and business risk registers will inform the Group's TCFD risk disclosures.

W4.1b

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

	Total % company-		Comment	
	number of facilities	wide facilities this		
	exposed to	represents		
	water risk			
Row 1	12	1-25	12 facilities represent 18% of our total Operations facilities (66). In 2020 we reported 15%, 11 out of 72 Operations facilities. The changes in 2022 vs 2021 in the total number of facilities is driven by closure of several facilities, none of which is located in water risk areas. The increase is the number of facilities is exposed to water risk is driven by inclusion of our facility in Uzbekistan into the list due to its increase business activities and exceeding threshold of 1% of total company's revenue affected. We maintain the list of on exact geographical coordinates of factories and green leaf threshing plants based on the information from local sites' teams via our online environmental reporting system (Credit360). We've mapped our factories and green leaf threshing plants (GLTs) at WRI Aqueduct map and applied the 'default' risk scheme. The mapping is reviewed on an annual basis. We define the location as 'water risk' area if it corresponds to an area of Extremely High risk or High risk according to the WRI Aqueduct tool. Offices, R&D centres and distribution/warehousing locations are out of scope due to being less intensive compared to Operations facilities in terms of water use. These are included only in case they are physically located at the same site as Operations facilities in terms of water use. These are included only in case they are physically located at the same site as Operations facilities in terms of water use. These are included only in case they are physically located at the same site as Operations facilities in terms of water use. These are included only in case they are physically located at the same site as Operations facilities of facilities exposed to water risk is 1% of the total company's revenue.	
			Operations refers to our factories manufacturing cigarettes a other finished goods as well as green leaf threshing plants (GLTs).	

W4.1c

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

Country/Area & River basin Bangladesh Ganges - Brahmaputra

Number of facilities exposed to water risk

% company-wide facilities this represents 1-25

% company's total global revenue that could be affected 1-10

Comment

Our facility (factory) in Bangladesh is in 'high' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66 facilities. As per revenue, it contributes to around 6%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is Ganges - Bramaputra, respective 'minor water basins' are Bhramaputra 4 and Ganga 5.

Country/Area & River basin

Bangladesh Ganges - Brahmaputra

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

% company's total global revenue that could be affected

1-10

Comment

Our facility (green leaf threshing plant) in Bangladesh is in 'high' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66 facilities. As per revenue, it contributes to around 8%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is Ganges - Bramaputra, respective 'minor water basins' are Bhramaputra 4 and Ganga 5.

Country/Area & River basin

Chile Other, please specify North Chile, Pacific Coast

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

% company's total global revenue that could be affected

1-10

Comment

Our facility (factory) in Chile - Casablanca is in 'high' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66 facilities. As per revenue, this contributes to around 1.3%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is North Chile, Pacific Coast, respective 'minor water basins' is Maipo.

Country/Area & River basin

Indonesia Brantas

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

% company's total global revenue that could be affected

1-10

Comment

Our facility (factory) in Indonesia is in 'extremely high' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66 facilities. As per revenue, this contributes to around 2.1%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is Java - Timor.

Country/Area & River basin Kenya Galana

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

% company's total global revenue that could be affected 1-10

1-10

Comment

Our facility (factory) in Kenya is in 'High' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66 facilities. As per revenue, this contributes to around 2.0%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is Africa, East Central Coast.

Country/Area & River basin

Mexico Bravo

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

% company's total global revenue that could be affected

1-10

Comment

Our facility (factory) in Mexico is in 'High' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66 facilities. As per revenue, this contributes to around 2.2%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is Rio Grande-Bravo.

Country/Area & River basin

Nigeria Other, please specify Oshun

Number of facilities exposed to water risk

1

% company-wide facilities this represents 1-25

% company's total global revenue that could be affected

1-10

Comment

Our facility (factory) in Nigeria Ibadan is in 'High' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66 facilities. As per revenue, this contributes to around 2.3%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is Africa, West Coast.

Country/Area & River basin

Pakistan Other, please specify Kabul / Swat / Alingar

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

% company's total global revenue that could be affected

1-10

Comment

Our facility (factory and green leaf threshing plant) in Pakistan Akora is in 'extremely high/ high' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66 facilities. As per revenue, these contribute to around 5.1%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is Indus.

Country/Area & River basin

Pakistan Other, please specify Jhelum

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

% company's total global revenue that could be affected

1-10

Comment

Our facility (factory) in Pakistan Jhelum is in 'extremely high/ high' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66

facilities. As per revenue, these contribute to around 2.6%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is Indus.

Country/Area & River basin

Romania Other, please specify Ialomita

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

% company's total global revenue that could be affected

Less than 1%

Comment

Our facility (factory) in Romania is in 'Extremely High' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66 facilities. As per revenue, this contributes to around 4.1%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is Danube.

Country/Area & River basin

Viet Nam Other, please specify Song Be Delta

Number of facilities exposed to water risk

1

% company-wide facilities this represents 1-25

% company's total global revenue that could be affected

1-10

Comment

Our facility (factory) in Vietnam is in 'High' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66 facilities. As per revenue, this contributes to around 1.4%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is Viet Nam Coast.

Uzbekistan Other, please specify Zeravshan

Number of facilities exposed to water risk

% company-wide facilities this represents

1-25

1

% company's total global revenue that could be affected

1-10

Comment

Our facility (factory) in Uzbekistan is in 'extremely high' overall water risk zone as per Aqueduct Water Risk Atlas. 1 facility represents 1.5% out of our 66 facilities. As per revenue, this contributes to around 1.2%. The water basin specified is 'minor water basin' as per WRI Aqueduct map. Respective 'major water basin' is Amu Darya.

W4.2

(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

Chile Other, please specify Maipo

Type of risk & Primary risk driver

Acute physical Drought

Primary potential impact

Reduction or disruption in production capacity

Company-specific description

Water risks and opportunity assessments are conducted globally using WRI Aqueduct tool, IPCC projections, TCFD scenario risk mapping analysis and inputs from AWS standard and our Global Risk and Insurance provider on Natural Catastrophes. These assessments aim to identify material risks and opportunities, which includes flood, drought, baseline water stress, water depletion and water quantity limitations, which then although BAT globally, regionally and at each specific location to consider relevant risk management and mitigation plans and discuss and engagement with local stakeholders. Based on this, the BAT factory in Chile has been deemed to be a highwater risk area. In addition, as per WRI, by 2040 Chile is to be within Top 30 water risk

countries. The water risk is primarily driven by high water stress, which is identified as being "Extremely High", via the WRI aqueduct tool, it is expected to further increase and remain Extremely High in 2030 and in 2040 under any of the scenarios (pessimistic, BAU, optimistic). In any of the projections, water stress is to increase by 2 times. The BAT factory lies within the Maipo river basin, which is the river sourcing the country's capital and has seen a decrease in water levels. Other water users in the same area are agriculture (incl. highly water-intensive avocado growing) and mining companies as well as local communities. Water shortage might result from decreased water availability in municipal water line and groundwater as well as from quotation of water use for industry by authorities. The Chile site, in terms of manufacturing capabilities is in the Top 5 sites with the region, so is strategically important, any impairment or interruptions in local production due to water shortage can result in footprint review or alternative sourcing for this market.

The main risks of the operation Chile Casablanca are related to the great drought in Chile and water scarcity in Valparaíso. Chile is currently going through the deepest and most extensive drought in its history, which is why the condition of water scarcity is critical at the national level. This drought generates a decrease in water resources causing restriction of its consumption in industries giving priority to human consumption.

Timeframe

More than 6 years

Magnitude of potential impact

Low

Likelihood

About as likely as not

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency) 480,000

Potential financial impact figure - maximum (currency) 1,500,000

Explanation of financial impact

Our estimate in terms of relative magnitude ranges from £480,000 to £1.5 Million for our operations based on potential water related disruption to the BAT Chile facility. Due to the fact that we have not experienced such an event, our estimates are based on inputs from our insurance risk reports for natural catastrophes and potential financial losses related to minor and major business interruptions. The assessment is facility specific and is based on production related costs (excluding raw materials). BAT impact range can be broken down as: Potential financial impact (minimum) "Number of disrupted days

* daily interruption cost". And Potential financial impact (maximum) "Number of disrupted days * daily interruption cost".

Primary response to risk

Develop drought emergency plans

Description of response

The local BAT management's response has been focused on reducing water dependency on water withdrawals through the implementation of water saving initiatives in our factory team have identified all suitable options to prepare for drought and tie into local Business Continuity Management Plans and as test the plans at regular intervals. Ongoing analysis of plans and tests are updated accordingly. In terms of technical measures, the site teams focus of improving water efficiency, through reducing water withdrawn and increase water with CAPEX investments and OPEX spend, this has resulted in a 3-year saving of 24% (2022 v 2019) and increased % of water recycled 49% (+10.7pp v 2021), this was largely helped from the implementation of the sites Energy & Water Management System, which includes Level 4 (equipment level) water metering. The short-medium relevant initiatives and projects will be reviewed and supported over the next 1-4 years. From a non-technical side, the site implemented a water stewardship management system that was audited and certified by AWS in 2022.

Since 2015, to further mitigate against water risks in the area, the Casablanca factory has implemented various initiatives and projects to reduce water consumption. These include: ENERCON [Energy & Water management system], implementation of waterless urinals, reduced water pressure showers, dry cooler, RO installation in boiler, Replace vacuum pumps with oil rings, Replacement steam traps. These initiatives resulted in a 43% reduction in water consumption and an increase in recycling from 37% to 49%, considering the years from 2017 to 2022.

By 2023, BAT Chile's goal is to expand the reuse to 55% and other initiatives are planned such as PMD hot water heat pump, Phase 2 water treatment plant, flash steam curing and Rainwater recovery.

Cost of response

450,000

Explanation of cost of response

The cost of response figure refers to Capex/Investment cost for the implementation of technical measures, aimed at reducing water withdrawn and increase the % of water recycled based on projected costs for 2022 and beyond relevant project. These included improvements made to waste-water treatment plants, closed loop systems, Reverse Osmosis (R.O) technologies. In addition to a number of maintenance improvements with installation of variable frequency drives for pumps replacements, re-use of cleaning water from the sites with the most water intensive processes.

Indonesia Brantas

Type of risk & Primary risk driver

Chronic physical Declining water quality

Primary potential impact

Upfront costs to adopt/deploy new practices and processes

Company-specific description

Water risks and opportunity assessments are conducted globally using WRI aqueduct tool, IPCC projections, TCFD scenario risk mapping analysis and inputs from AWS standard and our Global Risk and Insurance provider on Natural Catastrophes. These assessments aim to identify material risks and opportunities, which includes flood, drought, baseline water stress, water depletion and water quantity limitations, which then although BAT globally, regionally and at each specific location to consider relevant risk management and mitigation plans and to discuss and engage with local stakeholders. Our BAT factory in Indonesia is located in high water risk area. The water risk is primarily driven by water quality risk, mainly due to low levels of wastewater treatment and collection as well as due to issues with drinking water quality and sanitation. The BAT factory is located at river Brantas which is deteriorating due to water pollution because of the above factors and plastic pollution. The facility sources water from the ground and discharges the water to surface water upon treatment. Worsening water quality might result in a need to change or diversify water supply and change the water treatment technical arrangements and practices. As the worst-case scenario, impairment or interruptions in local production due to poor water quality can result in footprint review or alternative sourcing for this market.

Timeframe

More than 6 years

Magnitude of potential impact

Low

Likelihood

About as likely as not

Are you able to provide a potential financial impact figure? Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency) 504,000

Potential financial impact figure - maximum (currency) 1,520,000

Explanation of financial impact

Our estimate in terms of relative magnitude ranges from £504,000 to £1.52 Million for our operations based on potential water related disruption to the BAT Indonesia facility. Due to the fact that we have not experienced such an event, our estimates are based on inputs from our insurance risk reports for natural catastrophes and potential financial losses related to minor and major business interruptions. The assessment is facility specific and is based on production related costs (excluding raw materials). BAT impact range can be broken down as: Potential financial impact (minimum) "Number of disrupted days * daily interruption cost". And Potential financial impact (maximum) "Number of disrupted days * daily interruption cost".

Primary response to risk

Adopt water efficiency, water reuse, recycling and conservation practices

Description of response

The local BAT management's response has been focused on reducing water dependency on water withdrawals through the implementation of water saving initiatives. Our factory team have identified all suitable options to prepare for further water quality issues and these tie into local Business Continuity Management Plans and as test the plans at regular intervals. We have established a system of monitoring the quality of the water withdrawn and discharged to ensure it meets regulatory requirements as well as quality requirements required when recycled into our processes, which supports reducing the water we need to withdraw. We continue with CAPEX investments and Opex spend for efficiencies, which following investments in 2022 on increased wastewater treatment and reverse osmosis, resulted in a 16% reduction in water withdrawn (2022 v 2021) and a 22p.p increase in water recycled, now up to 24% (2022 v 2021). From a non-technical side, the site implemented a water stewardship management system that was audited and certified by AWS in 2022.

Cost of response

500,000

Explanation of cost of response

The cost of response figure refers to Capex/Investment cost for the implementation of technical measures, aimed at further increasing the treatment levels of the water withdrawn, to improve the quality and also further increase the % of water recycled based on projected costs for 2022 and beyond relevant project. These included improvements made to waste-water treatment plants and additional phases for Reverse Osmosis (R.O) technologies.

Country/Area & River basin

Kenya Galana

Type of risk & Primary risk driver Chronic physical

Declining water quality

Primary potential impact

Upfront costs to adopt/deploy new practices and processes

Company-specific description

Water risks and opportunity assessments are conducted globally using WRI Aqueduct Tool, IPCC projections, TCFD scenario risk mapping analysis and inputs from AWS standard and our Global Risk and Insurance provider on Natural Catastrophes. These assessments aim to identify material risks and opportunities, which includes flood, drought, baseline water stress, water depletion and water quantity limitations, which then although BAT globally, regionally and at each specific location to consider relevant risk management and mitigation plans and discuss and engagement with local stakeholders. The BAT factory in Kenya is located in high water risk area. The water risk is primarily driven by water quality risk, mainly due to low levels of wastewater treatment and collection as well as due to issues with drinking water quality and sanitation. Our BAT factory is located at river Galana which is deteriorating due to water pollution, including pollution by heavy metals. The facility sources most of the water from the ground and discharges the water to municipality. Worsening water quality might result in a need to change or diversify water supply and change water treatment technical arrangements and practices. As the worst-case scenario impairment or interruptions in local production due to poor water quality can result in footprint review or alternative sourcing for this market.

Timeframe

More than 6 years

Magnitude of potential impact

Low

Likelihood

Unlikely

- Are you able to provide a potential financial impact figure? Yes, an estimated range
- Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

240,000

Potential financial impact figure - maximum (currency)

722,000

Explanation of financial impact

Our estimate in terms of relative magnitude ranges from £240,000 to £722,000 for our operations based on potential water related disruption to the BAT Kenya facility. Due to the fact that we have not experienced such an event, our estimates are based on inputs

from our insurance risk reports for natural catastrophes and potential financial losses related to minor and major business interruptions. The assessment is facility specific and is based on production related costs (excluding raw materials). BAT impact range can be broken down as: Potential financial impact (minimum) "Number of disrupted days * daily interruption cost". And Potential financial impact (maximum) "Number of disrupted days * daily interruption cost".

Primary response to risk

Adopt water efficiency, water reuse, recycling and conservation practices

Description of response

The local BAT management's response has been focused on reducing water dependency on water withdrawals through the implementation of water saving initiatives. Our factory team have identified suitable options to prepare for further water quality issues and these tie into local Business Continuity Management Plans and as test the plans at regular intervals. We have established a system of monitoring the quality of the water withdrawn and discharged to ensure it meets regulatory requirements as well as quality requirements required when recycled into our processes, which supports reducing the water we need to withdraw. We continue with CAPEX investments and Opex spend for efficiencies, which following investments in 2022 to increase the capacity of the onsite reverse osmosis, resulted in a 13% reduction in water withdrawn (2022 v 2021) and a 13.8p.p increase in water recycled, now up to 15.5% (2022 v 2021). From a non-technical side, the site implemented a water stewardship management system that was audited and certified by AWS in 2022.

Cost of response

1,000,000

Explanation of cost of response

The method used to calculate the cost of response involves allocating capital expenditure (Capex) specifically for a water recycling project. This allocation is based on the average project cost for similar purposes at our facilities that already have some wastewater treatment capabilities. The goal of this project is to eliminate the necessity for alterations in the supply chain. Additionally, the cost of redesigning leaf sourcing is included as part of the regular operations and expenses.

Country/Area & River basin

Mexico Bravo

Type of risk & Primary risk driver

Chronic physical Water stress

Primary potential impact

Reduction or disruption in production capacity

Company-specific description

Water risks and opportunity assessments are conducted globally using WRI Aqueduct Tool, IPCC projections, TCFD scenario risk mapping analysis and inputs from AWS standard and our Global Risk and Insurance provider on Natural Catastrophes. These assessments aim to identify material risks and opportunities, which includes flood, drought, baseline water stress, water depletion and water quantity limitations, which then although BAT globally, regionally and at each specific location to consider relevant risk management and mitigation plans and discuss and engagement with local stakeholders. Our BAT factory in Mexico is located in high water risk area, the risk is mainly driven by water stress, which we have identified as being "extremely high", via the WRI aqueduct tool, which we do expect to further increase, remaining Extremely high in 2030 and in 2040 under any of the scenarios (pessimistic, BAU, optimistic). In any of the projections, water stress is to increase by 1.4 -2 times. Water demand is growing due to development of agriculture and industries within the area as well as electric power producers. Our facility sources most of the water from municipality, thus might be affected by municipal quotas for water use aimed to share water resources between users. An impairment or interruptions in local production due to water shortage can result in footprint review or alternative sourcing for this market.

BAT's Mexico Factory is located in Monterrey Nuevo Leon and in 2022, Monterrey faced one of the deepest and most extensive droughts in the last 15 years. Water reservoirs that supply water to the city and to the factory reached critical levels, causing disruption of supply to both homes and industries. BAT Mexico was impacted, safety stocks in water tanks were reduced, but production was not interrupted.

Timeframe

More than 6 years

Magnitude of potential impact

Low

Likelihood

About as likely as not

Are you able to provide a potential financial impact figure? Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency) 820,000

Potential financial impact figure - maximum (currency) 2,460,000

Explanation of financial impact

Our estimate in terms of relative magnitude ranges from £820,000 to £2.46 Million for our operations based on potential water related disruption to the BAT Mexico facility.

Due to the fact that we have not experienced such an event, our estimates are based on inputs from our insurance risk reports for natural catastrophes and potential financial losses related to minor and major business interruptions. The assessment is facility specific and is based on production related costs (excluding raw materials). BAT impact range can be broken down as: Potential financial impact (minimum) "Number of disrupted days * daily interruption cost". And Potential financial impact (maximum) "Number of disrupted days * daily interruption cost".

Primary response to risk

Adopt water efficiency, water reuse, recycling and conservation practices

Description of response

We continue with CAPEX investments and Opex spend for efficiencies, scenario and materiality loss mapping and risk analysis on water recycling processes and prioritising heavily our operations in water stress areas, from the most strategic to the least. In case of local leaf sourcing, also the cost to source it from other growing regions.

To further mitigate against water risks in the area, BAT Mexico has invested in several optimization projects in order to optimize water consumption and reduce water withdrawal. These initiatives resulted in 19% increase in water recycling and 57% reduction in water withdrawn (vs 2017 baseline).

In addition to responsible water consumption, in 2022 our Mexico factory received AWS certification, demonstrating our commitment to water preservation in our internal processes, as well as external communities.

Cost of response

5,000,000

Explanation of cost of response

The method used to calculate the cost of response involves allocating capital expenditure (Capex) specifically for a water recycling project. This allocation is based on the average project cost for similar purposes at our facilities that already have some wastewater treatment capabilities. The goal of this project is to eliminate the necessity for alterations in the supply chain. Additionally, the cost of redesigning leaf sourcing is included as part of the regular operations and expenses.

Country/Area & River basin

Nigeria Other, please specify Ohsun

Type of risk & Primary risk driver

Chronic physical Declining water quality

Primary potential impact

Upfront costs to adopt/deploy new practices and processes

Company-specific description

Water risks and opportunity assessments are conducted globally using WRI Aqueduct Tool, IPCC projections, TCFD scenario risk mapping analysis and inputs from AWS standard and our Global Risk and Insurance provider on Natural Catastrophes. These assessments aim to identify material risks and opportunities, which includes flood, drought, baseline water stress, water depletion and water quantity limitations, which then although BAT globally, regionally and at each specific location to consider relevant risk management and mitigation plans and discuss and engagement with local stakeholders. The BAT factory in Nigeria is located in high water risk area. The water risk is primarily driven by water quality risk, mainly associated with low levels of wastewater treatment and collection. Water courses in the area is affected by industrial, agricultural, and civil water run-offs. The facility sources most of the water from the ground and discharges water to surface water upon treatment. The site has no access to municipal water supply and treatment infrastructure. Worsening water quality might result in a need for additional technical arrangements and practices for treating withdrawn and discharged water. As the worst-case scenario impairment or interruptions in local production due to poor water quality can result in footprint review or alternative sourcing for this market.

Timeframe

More than 6 years

Magnitude of potential impact

Low

Likelihood

Unlikely

Are you able to provide a potential financial impact figure? Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency) 358,000

Potential financial impact figure - maximum (currency)

1,080,000

Explanation of financial impact

Our estimate in terms of relative magnitude ranges from £358,000 to £1.08 Million for our operations based on potential water related disruption to the BAT Nigeria facility. Due to the fact that we have not experienced such an event, our estimates are based on inputs from our insurance risk reports for natural catastrophes and potential financial losses related to minor and major business interruptions. The assessment is facility specific and is based on production related costs (excluding raw materials). BAT impact

range can be broken down as: Potential financial impact (minimum) "Number of disrupted days * daily interruption cost". And Potential financial impact (maximum) "Number of disrupted days * daily interruption cost".

Primary response to risk

Adopt water efficiency, water reuse, recycling and conservation practices

Description of response

The local BAT management's response has been focused on reducing water dependency on water withdrawals through the implementation of water saving initiatives. Our factory team have identified suitable options to prepare for further water quality issues and these tie into local Business Continuity Management Plans and as test the plans at regular intervals. We have established a system of monitoring the quality of the water withdrawn and discharged to ensure it meets regulatory requirements as well as quality requirements required when recycled into our processes, which supports reducing the water we need to withdraw. We continue with CAPEX investments and Opex spend for efficiencies, which following investments in 2022 to improve the onsite wastewater treatment plant, which started in 2022 and will end in 2023, but has already started to some strong resulted with an 8% reduction in water withdrawn (2022 v 2021) and a 26.6p.p increase in water recycled, now up to 31.7% (2022 v 2021). From a non-technical side, the site implemented a water stewardship management system that was audited and certified by AWS in 2022.

Cost of response

1,000,000

Explanation of cost of response

The method used to calculate the cost of response involves allocating capital expenditure (Capex) specifically for a water recycling project. This allocation is based on the average project cost for similar purposes at our facilities that already have some wastewater treatment capabilities. The goal of this project is to eliminate the necessity for alterations in the supply chain. Additionally, the cost of redesigning leaf sourcing is included as part of the regular operations and expenses.

Country/Area & River basin

Pakistan Indus

Type of risk & Primary risk driver

Chronic physical Declining water quality

Primary potential impact

Upfront costs to adopt/deploy new practices and processes

Company-specific description

Water risks and opportunity assessments are conducted globally using WRI Aqueduct Tool, IPCC projections, TCFD scenario risk mapping analysis and inputs from AWS standard and our Global Risk and Insurance provider on Natural Catastrophes. These assessments aim to identify material risks and opportunities, which includes flood, drought, baseline water stress, water depletion and water quantity limitations, which then although BAT globally, regionally and at each specific location to consider relevant risk management and mitigation plans and discuss and engagement with local stakeholders. Our BAT factory in Pakistan with green leaf threshing plant on site is located in high water risk area. However, mitigation plans in place have seen the site gain AWS certification.

The water risk is primarily driven by water quality risk, mainly due to low levels of wastewater treatment and collection as well as due to issues with drinking water quality and sanitation. BAT factory is located at river Indus which is being affected by agricultural and industrial water run-offs. The facility sources most of the water from the ground and discharges water to surface water upon treatment. Worsening water quality might result in a need to change or diversify water supply and change water treatment technical arrangements and practices. As the worst-case scenario impairment or interruptions in local production due to poor water quality can result in footprint review or alternative sourcing for this market.

Timeframe

More than 6 years

Magnitude of potential impact

Low

Likelihood

About as likely as not

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency) 308,000

Potential financial impact figure - maximum (currency) 922,000

Explanation of financial impact

Our estimate in terms of relative magnitude ranges from £308,000 to £922,000 for our operations based on potential water related disruption to the BAT Pakistan facility. Since we have not experienced such an event, our estimates are based on inputs from our insurance risk reports for natural catastrophes and potential financial losses related to minor and major business interruptions. The assessment is facility specific and is based on production related costs (excluding raw materials). BAT impact range can be broken

down as: Potential financial impact (minimum) "Number of disrupted days * daily interruption cost". And Potential financial impact (maximum) "Number of disrupted days * daily interruption cost".

Primary response to risk

Adopt water efficiency, water reuse, recycling and conservation practices

Description of response

We continue with CAPEX investments and Opex spend for efficiencies, scenario and materiality loss mapping and risk analysis on water recycling processes and prioritising heavily of operations in water stress areas from the most strategic to the least. In case of local leaf sourcing, also the cost to source it from other growing regions.

To further mitigate against water risks in the area, BAT's Pakistan Factories withdraw water from tube wells, extracting ground water, with progressive water recycling rates of over 40%. Our Akora site (including both a manufacturing facility and green leaf threshing plant) is AWS Certified and our Jhelum Factory is on track for AWS certification in Q3 2023. Measures have been taken by both sites (on and off-site) to drive water stewardship. In the catchment, awareness and education campaigns have been delivered regarding the installation of drip irrigation systems for farmers and filtration plants, in order to increase provision of clean drinking water. In order to reduce the industrial runoff of print which can lead to a decline in water quality, both sites are equipped with effluent treatment plants to maximize water conservation efforts by re-using and recycling the wastewater within the system. Further collaborations with the government and NGOs are in progress to progressively drive efforts towards water stewardship within the community.

Cost of response

500,000

Explanation of cost of response

Explanation of cost of response Capex allocation for water efficiency and recycling project (average project cost for this purpose for our facilities with already some wastewater treatment) which should avoid the need for supply chain alterations. Cost of redesigning leaf sourcing included in the business as usual of operations.

Country/Area & River basin

Romania Danube

Type of risk & Primary risk driver

Chronic physical Water stress

Primary potential impact

Reduction or disruption in production capacity

Company-specific description

Water risks and opportunity assessments are conducted globally using WRI Aqueduct Tool, IPCC projections, TCFD scenario risk mapping analysis and inputs from AWS standard and our Global Risk and Insurance provider on Natural Catastrophes. These assessments aim to identify material risks and opportunities, which includes flood, drought, baseline water stress, water depletion and water quantity limitations, which then although BAT globally, regionally and at each specific location to consider relevant risk management and mitigation plans and discuss and engagement with local stakeholders. The BAT factory in Romania is located in high water risk area, the risk is mainly driven by water stress, which we have identified as being "extremely high, via the WRI aqueduct tool, which we do expect to further increase, remaining Extremely high in 2030 and in 2040 under any of the scenarios (pessimistic, BAU, optimistic). In any of the projections, water stress is to increase by 1.4 times. Water demand is high due to the water needs of densely located industrial facilities and local community. Further, the Danube is the river flowing over multiple countries, thus there is effect of upstream water withdrawals. Water supply is generally low. Our facility sources most of the water from the ground, thus might be affected by the lowering of groundwater table as well as municipal quotas for water withdrawal aimed to share water resources between users. As the worst-case scenario, an impairment, or interruptions in local production due to water shortage can result in footprint review or alternative sourcing for this market.

Timeframe

More than 6 years

Magnitude of potential impact

Likelihood

Unlikely

Are you able to provide a potential financial impact figure? Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency) 1,060,000

Potential financial impact figure - maximum (currency)

3,170,000

Explanation of financial impact

Our estimate in terms of relative magnitude ranges from £1.06 Million to £3.17 Million for our operations based on potential water related disruption to the BAT Romania facility. Due to the fact that we have not experienced such an event, our estimates are based on inputs from our insurance risk reports for natural catastrophes and potential financial losses related to minor and major business interruptions. The assessment is facility specific and is based on production related costs (excluding raw materials). BAT impact

range can be broken down as: Potential financial impact (minimum) "Number of disrupted days * daily interruption cost". And Potential financial impact (maximum) "Number of disrupted days * daily interruption cost".

Primary response to risk

Adopt water efficiency, water reuse, recycling and conservation practices

Description of response

We continue with CAPEX investments and Opex spend for efficiencies, scenario and materiality loss mapping and risk analysis on water recycling processes and prioritising heavily on operations in water stress areas from the most strategic to the least. In case of local leaf sourcing, also the cost to source it from other growing regions. In addition, we have included the application of AWS Water Stewardship Standards at the site and the site gained AWS certification in 2022.

To further mitigate against water risks in the area, a reverse osmosis water recovery has been installed for the existing wastewater treatment plant, as well as water filtration for the existing retention rainwater basin. This investment consisted of two systems being installed, one system treating our sewerage water from the existing wastewater treatment plant into the Disc Tube Reverse Osmosis (DTRO) plant. The recycled water is used in existing water-cooled towers, scrubber and steam boilers. The second system treats our rainwater in a filtration system. The treated water is used in water-cooler towers, irrigation system and fire-fighting tank. The installation of these 2 systems has significantly contributed to reducing the factory's water consumption (by approx. 30,000 cubic metres) and increased water recycled at the site to over 30%.

Cost of response

500,000

Explanation of cost of response

The method used to calculate the cost of response involves allocating capital expenditure (Capex) specifically for a water recycling project. This allocation is based on the average project cost for similar purposes at our facilities that already have some wastewater treatment capabilities. The goal of this project is to eliminate the necessity for alterations in the supply chain. Additionally, the cost of redesigning leaf sourcing is included as part of the regular operations and expenses.

Country/Area & River basin

Viet Nam Other, please specify Song Be Delta

Type of risk & Primary risk driver

Chronic physical Declining water quality

Primary potential impact

Upfront costs to adopt/deploy new practices and processes

Company-specific description

Water risks and opportunity assessments are conducted globally using WRI Aqueduct Tool, IPCC projections, TCFD scenario risk mapping analysis and inputs from AWS standard and our Global Risk and Insurance provider on Natural Catastrophes. These assessments aim to identify material risks and opportunities, which includes flood, drought, baseline water stress, water depletion and water quantity limitations, which then although BAT globally, regionally and at each specific location to consider relevant risk management and mitigation plans and discuss and engagement with local stakeholders. Our BAT factory in Vietnam is located in water risk area. The water risk is primarily driven by water quality risk, mainly associated with low levels of wastewater treatment and plastic pollution in watercourses. The river basin is affected by water runoffs from agriculture and local communities. The facility sources most of the water from municipality and discharges water to surface water upon treatment. Worsening water quality might result in a need for additional technical arrangements for improving water withdrawn quality and treating water discharged as well as diversifying water sources. As the worst-case scenario impairment or interruptions in local production due to poor water quality can result in footprint review or alternative sourcing for this market.

Dong Nai river is within Viet Nam only, and not linked to any other country. The river is strictly protected by the government to ensure water quality, especially the upstream and middle stream of the river which supply fresh water to citizens. Only the downstream river is permitted for use by industrial parks and other manufacturing facilities. The risk of declining water quality is low due to governmental procedures and inspections. All discharged water from industrial zones are well controlled and are required to follow the Viet Nam standard. However, the discharge from the community is not controllable yet and this represents the greatest risk of Dong Nai river in regard to water quality.

Timeframe

More than 6 years

Magnitude of potential impact

Low

Likelihood

About as likely as not

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency) 430,000

Potential financial impact figure - maximum (currency)

1,290,000

Explanation of financial impact

Our estimate in terms of relative magnitude ranges from £430,000 to £1.29 Million for our operations based on potential water related disruption to the BAT Vietnam facility. Due to the fact that we have not experienced such an event, our estimates are based on inputs from our insurance risk reports for natural catastrophes and potential financial losses related to minor and major business interruptions. The assessment is facility specific and is based on production related costs (excluding raw materials). BAT impact range can be broken down as: Potential financial impact (minimum) "Number of disrupted days * daily interruption cost". And Potential financial impact (maximum) "Number of disrupted days * daily interruption cost".

Primary response to risk

Adopt water efficiency, water reuse, recycling and conservation practices

Description of response

We have established a system of monitoring the quality of the water withdrawn and discharged to ensure it meets regulatory requirements as well as quality requirements for our processes. We continue with CAPEX investments and Opex spend for efficiencies, scenario and materiality loss mapping and risk analysis on water recycling processes and prioritising heavily on operations in water stress areas from the most strategic to the least. In case of local leaf sourcing, also the cost to source it from other growing regions. In addition, we have included the application of AWS Water Stewardship Standards at the site.

To further mitigate against water risks in the area, all wastewater from our Viet Nam site is treated by our Waste Water Treatment Plant (WWTP) to achieve the necessary water quality standard, before it is discharged to the river. 70% of discharged water is also reused by BAT for the landscape surrounding the site and air scrubber machine.

We will upgrade our WWTP in 2023 to achieve higher water quality to recycle for use in our cooling tower, with the aim to reuse 100% discharged water from 2024. In the catchment practice, there is an afforestation programme in upstream area to protect the river's water source.

Cost of response

300,000

Explanation of cost of response

The method used to calculate the cost of response involves allocating capital expenditure (Capex) specifically for a water recycling project. This allocation is based on the average project cost for similar purposes at our facilities that already have some wastewater treatment capabilities. The goal of this project is to eliminate the necessity for alterations in the supply chain. Additionally, the cost of redesigning leaf sourcing is included as part of the regular operations and expenses.

Country/Area & River basin

Uzbekistan Other, please specify Zerafshan River

Type of risk & Primary risk driver

Chronic physical Water stress

Primary potential impact

Reduction or disruption in production capacity

Company-specific description

Water risks and opportunity assessments are conducted globally using WRI aqueduct tool, IPCC projections, TCFD scenario risk mapping analysis and inputs from AWS standard and our Global Risk and Insurance provider on Natural Catastrophes. These assessments aim to identify material risks and opportunities, which includes flood, drought, baseline water stress, water depletion and water quantity limitations, which then although BAT globally, regionally and at each specific location to consider relevant risk management and mitigation plans and discuss and engagement with local stakeholders. Our BAT factory (Samarkand) and green leaf threshing plant (Urgut) in Uzbekistan are located in high water risk area, the risk is mainly driven by water stress. However, water demand is high due to developed agriculture (incl. water-intensive cotton growing) and industries within the area. Water supply is low due to the arid climate with extremely hot summer temperatures. Our facility sources most of the water from the ground, thus might be affected by the lowering of groundwater table as well as municipal quotas for water withdrawal aimed to share water resources between users. An impairment or interruptions in local production due to water shortage can result in footprint review or alternative sourcing for this market. Both Samarkand and Urgut factories are located in the Zerafshan river catchment. The Zerafshan river originates from neighboring Tajikistan. Hence, the upstream location in Tajikistan imposes additional risks in regard to future water supply for the whole Samarkand region.

Timeframe

More than 6 years

Magnitude of potential impact

Low

Likelihood

Unlikely

Are you able to provide a potential financial impact figure? Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

208,000

Potential financial impact figure - maximum (currency) 623,000

Explanation of financial impact

Our estimate in terms of relative magnitude ranges from £208,000 to £623,000 for our operations based on potential water related disruption to the BAT Uzbekistan facility.

The assessment is facility specific and is based on production related costs (excluding raw materials). BAT impact range can be broken down as: Potential financial impact (minimum) "Number of disrupted days * daily interruption cost". And Potential financial impact (maximum) "Number of disrupted days * daily interruption cost".

Primary response to risk

Adopt water efficiency, water reuse, recycling and conservation practices

Description of response

We continue with CAPEX investments and Opex spend for efficiencies, scenario and materiality loss mapping and risk analysis on water recycling processes and prioritising heavily of operations in water stress areas from the most strategic to the least. In case of local leaf sourcing, also the cost to source it from other growing regions.

In order to mitigate the aforementioned water risk to our Uzbekistan operations sites, the following practices are in place:

Site practice: Water saving initiatives are in place on-site, as borehole water from Zerafshan River basin aquifers is used. Firstly, water use is being reduced via LVL3 metering, enabling leakage monitoring and closure, aerating nozzles have been introduced for water taps and automatic motion-sensor water taps have been installed.

Both Samarkand and Urgut sites are equipped with their own Wastewater Treatment Plants (WWTP). Each plant is located on-site with capacities of 100m3 water treatment per day. Part of the treated water is used for irrigation. In 2023, we are also building a pump station at the Urgut site, incorporating drip irrigation for its trees.

Tobacco farming best practices included the introduction of drip irrigation in the 2022 crop year for Virginia and Basma tobacco. This resulted in a successful crop with almost 40% water use reduction at drip-irrigated fields.

Catchment protection: We are working with Zerafshan Natural Reserve to improve irrigation of the reserve and are planting over 6500 trees between 2022-2023. Additionally we are supporting an information campaign against increased illegal grazing at Zerafshan Natrual Reserve.

Cost of response

500,000

Explanation of cost of response

The approach utilized to calculate the cost of response involves several key methods. Firstly, we allocate both capital expenditure (CAPEX) investments and operational expenditure (OPEX) spending towards improving efficiencies. This includes conducting scenario and materiality loss mapping as well as risk analysis on water recycling processes. Emphasis is placed on prioritizing operations in water stress areas, starting from the most strategically significant to the least. Furthermore, in the case of local leaf sourcing, we also consider the cost associated with sourcing from alternative growing regions. Additionally, we have implemented the Alliance for Water Stewardship (AWS) Standards at our Uzbekistan sites. Both the factory and the green leaf threshing plant underwent an AWS gap assessment in 2021 and are scheduled for AWS certification assessments in the fourth quarter of 2022. These measures demonstrate our commitment to responsible water management and sustainability practices.

Country/Area & River basin

Bangladesh Ganges - Brahmaputra

Type of risk & Primary risk driver

Chronic physical Declining water quality

Primary potential impact

Upfront costs to adopt/deploy new practices and processes

Company-specific description

Water risks and opportunity assessments are conducted globally using WRI Aqueduct Tool, IPCC projections, TCFD scenario risk mapping analysis and inputs from AWS standard and our Global Risk and Insurance provider on Natural Catastrophes. These assessments aim to identify material risks and opportunities, which includes flood, drought, baseline water stress, water depletion and water quantity limitations, which then although BAT globally, regionally and at each specific location to consider relevant risk management and mitigation plans and discuss and engagement with local stakeholders. Our BAT factory and green leaf threshing plant in Bangladesh are located in high water risk area. The water risk is primarily driven by water quality risk, mainly due to low levels of wastewater treatment and collection. The Bangladesh sites are located at river Ganges - Brahmaputra which is affected by industrial, agricultural, and civil water run-offs. Furthermore, the factory site is close to the capital city. The facility sources most of the water from the ground and discharges water to municipal sewer. Worsening water quality might result in a need to change or diversify water supply and change water treatment technical arrangements and practices. As the worst-case scenario impairment or interruptions in local production due to poor water quality can result in footprint review or alternative sourcing for this market.

Timeframe

More than 6 years

Magnitude of potential impact

Low

Likelihood

More likely than not

Are you able to provide a potential financial impact figure? Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency) 570.000

Potential financial impact figure - maximum (currency) 1,680,000

Explanation of financial impact

Our estimate in terms of relative magnitude ranges from £570,000 to £1.68 Million for our operations based on potential water related disruption to the BAT Bangladesh facility. Due to the fact that we have not experienced such an event, our estimates are based on inputs from our insurance risk reports for natural catastrophes and potential financial losses related to minor and major business interruptions. The assessment is facility specific and is based on production related costs (excluding raw materials). BAT impact range can be broken down as: Potential financial impact (minimum) "Number of disrupted days * daily interruption cost".

Primary response to risk

Adopt water efficiency, water reuse, recycling and conservation practices

Description of response

The local BAT management's response has been focused on reducing water dependency on water withdrawals through the implementation of water saving initiatives. Our factory team have identified suitable options to prepare for further water quality issues and these tie into local Business Continuity Management Plans and as test the plans at regular intervals. We have established a system of monitoring the quality of the water withdrawn and discharged to ensure it meets regulatory requirements as well as quality requirements required when recycled into our processes, which supports reducing the water we need to withdraw. We continue with CAPEX investments and Opex spend for efficiencies, which following investments in 2022 with the installation reverse osmosis technology alongside our onsite wastewater treatment plant, which has supported a 14% reduction in water withdrawn (2022 v 2021) and a 12.1p.p increase in water recycled, now up to 32.1% (2022 v 2021). From a non-technical side, the site implemented a water stewardship management system that was audited and certified by AWS in 2022.

Cost of response

1,000,000

Explanation of cost of response

The method used to calculate the cost of response involves allocating capital expenditure (Capex) specifically for a water recycling project. This allocation is based on the average project cost for similar purposes at our facilities that already have some wastewater treatment capabilities. The goal of this project is to eliminate the necessity for alterations in the supply chain. Additionally, the cost of redesigning leaf sourcing is included as part of the regular operations and expenses.

W4.2a

(W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

Bangladesh Ganges - Brahmaputra

Stage of value chain

Supply chain

Type of risk & Primary risk driver

Acute physical Flood (coastal, fluvial, pluvial, groundwater)

Primary potential impact

Reduction or disruption in production capacity

Company-specific description

Bangladesh is one of our largest in-house operations in BAT representing over 10% of our total tobacco purchases in 2022. One of the main leaf sourcing areas is located in a zone prone to riverine flooding, which can lead to disruption of leaf growing and sourcing activities. Should any disruption incur within the tobacco supply chain then the wider supply chain would be at risk with significant cost increase taking place to import tobacco into the country". As an example they are developing a resistant hybrid that is being piloted in flooding areas.

Timeframe

4-6 years

Magnitude of potential impact

Low

Likelihood

Very unlikely

Are you able to provide a potential financial impact figure? Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

2,400,000

Potential financial impact figure - maximum (currency)

4,800,000

Explanation of financial impact

Our estimate in terms of relative magnitude ranges from £2.4 to £4.8 million based on potential crop shortage in Bangladesh ranging between 5 and 10% due to climate events (flood or drought) and the potential impact that this can have in the local tobacco availability. We have not experienced such an event to date, therefore we have capped this to 10% chance. This figure assumes we will have to purchase this tobacco from other sources outside of the country; which will come at higher landed cost due to higher base cost, freight and import duties. Therefore the risk figure reflects the cost of activating the sourcing plan from another country due to crop shortage.

Primary response to risk

Direct operations Increase investment in new technology

Description of response

With both our operations and supply chains having global footprints in 2022 we reviewed our plans to ensure we have mitigated the effects of severe climatic disruption in a small number of locations, and our business continuity management plans are designed to mitigate the consequence of supply chain interruption and disruption. We are also responding to that risk by maintaining an agronomy research programme in Bangladesh, constantly assessing new best practices, techniques and new cultivars that will along the time bring better yield (kg/hectare) and quality to the crop, mitigating the risk of the weather and water conditions in the specific leaf growing areas. The research programme is orchestrated by the team of experts of our Global Leaf Agronomy Development centre in Brazil that works extensively in farmer's resilience, this will continue into at least 2023. We believe our response is robust and agile to incorporate changes in risk levels and capitalise on opportunities coming out of our research schemes (like water resistant varieties).

Cost of response

1,000,000

Explanation of cost of response

The cost of response figure refers to the running cost to maintain the agronomic research programme and trials in Bangladesh as well as a portion of the cost of Global Leaf Agronomy Development that works with the leaf operations to create the 5-year agronomy plans.

Country/Area & River basin

Pakistan Indus

Stage of value chain

Supply chain

Type of risk & Primary risk driver

Chronic physical Water scarcity

Primary potential impact

Increased production costs due to changing input prices from supplier

Company-specific description

BAT operates in a risk-based and contingency approach. This means sourcing locations which coincide with water scarcity zones which includes Pakistan, which is another strategic leaf region, are constantly monitored. Before they are ever to be impacted so severely in ways that could impose disruptions of supply BAT would trigger and mitigate sourcing alternatives as part of our risk management strategy and continuity approach. This may mean longer freights, foreign exchange influence raising cost which could actually translate into substantive financial impact for the Group, increasing cost and impacting sales.

Timeframe

4-6 years

Magnitude of potential impact

Low

Likelihood

Very unlikely

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

100,000

Potential financial impact figure - maximum (currency)

1,000,000

Explanation of financial impact

The method employed to calculate the financial impact figure involves considering a worst-case scenario where leaf growers in a large area are affected, posing a threat to

the entire country's supply of green leaf tobacco. This figure represents the cost required to activate contingency sourcing measures. By estimating the potential consequences and assessing the risks associated with such a scenario, we can determine the financial implications and allocate resources accordingly to ensure the uninterrupted supply of green leaf tobacco.

Primary response to risk

Upstream Increase supplier diversification

Description of response

With BAT's suppliers globally spread, mitigating the effects of severe climatic disruption, and with our business continuity management plans designed to mitigate the consequence of supply chain interruption and disruption. Our business continuity management plans were reviewed in 2022 to ensure they still mitigate the consequence of supply chain interruption and disruption. We are also responding to that risk by working extensively via a team of experts in Brazil based on our Global Leaf Agronomy Development centre looking after farmer's resilience, including breeding for resilient tobacco varieties, this will continue into at least 2023. As an additional control, we would also source tobacco from other farmers within or outside of the country.

Cost of response

500,000

Explanation of cost of response

The calculation of the cost of response has taken into account a worst-case scenario, considering the potential financial impact if leaf growers in a significant area are affected, which could jeopardize the country's supply of green leaf tobacco. The calculated cost specifically represents the expenses associated with activating contingency sourcing measures. This estimation has been made to account for the potential need to secure alternative sources of green leaf tobacco in order to mitigate the potential disruptions to the supply chain caused by the adverse impact on leaf growers.

Country/Area & River basin

India Cauvery River

Stage of value chain

Supply chain

Type of risk & Primary risk driver

Chronic physical Water scarcity

Primary potential impact

Increased production costs due to changing input prices from supplier

Company-specific description

Although BAT does not have a manufacturing or leaf operational facility in India, India suppliers still represent about 10% of our total tobacco purchases and access to specific styles and blends of tobacco, which is uniquely grown here. Before they would be impacted so severely in ways that could impose disruptions of supply BAT would trigger and mitigate sourcing alternatives as part of our risk management strategy and continuity approach.

Timeframe

4-6 years

Magnitude of potential impact

Low

Likelihood

Very unlikely

Are you able to provide a potential financial impact figure? Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency) 100,000

Potential financial impact figure - maximum (currency) 1,000,000

Explanation of financial impact

The method employed to calculate the financial impact figure involves considering a worst-case scenario where leaf growers in a large area are affected, posing a threat to the entire country's supply of green leaf tobacco. This figure represents the cost required to activate contingency sourcing measures. By estimating the potential consequences and assessing the risks associated with such a scenario, we can determine the financial implications and allocate resources accordingly to ensure the uninterrupted supply of green leaf tobacco.

Primary response to risk

Upstream Increase supplier diversification

Description of response

BAT's business continuity management plans are designed to mitigate the consequence of supply chain interruption and disruption, these plans were reviewed and validated in 2022. In addition, we are continuing is responding to that risk by working extensively via a team of experts in Brazil based on our Global Leaf Agronomy Development Centre looking after farmer's resilience, including breeding for resilient tobacco varieties, this will continue into 2023 and beyond. Should that fail, the risk will subsequently be

mitigated by BAT would sourcing tobacco from other farmers within or outside of the country.

Cost of response

1,000,000

Explanation of cost of response

The calculation of the cost of response has taken into account a worst-case scenario, considering the potential financial impact if leaf growers in a significant area are affected, which could jeopardize the country's supply of green leaf tobacco. The calculated cost specifically represents the expenses associated with activating contingency sourcing measures. This estimation has been made to account for the potential need to secure alternative sources of green leaf tobacco in order to mitigate the potential disruptions to the supply chain caused by the adverse impact on leaf growers.

Country/Area & River basin

Mozambique Zambezi

Stage of value chain

Supply chain

Type of risk & Primary risk driver

Chronic physical Water scarcity

Primary potential impact

Increased production costs due to changing input prices from supplier

Company-specific description

BAT operates in a risk-based and contingency approach. This means: sourcing locations which coincide with water scarcity zones are constantly monitored. Before they are ever to be impacted so severely in ways that could impose disruptions of supply, we'd have triggered and mitigated sourcing alternatives. This may mean longer freights, foreign exchange influence raising cost which could actually translate into substantive financial impact for the Group. Mozambique supplies more than 50% of the second largest used tobacco in our products, called Burley.

Timeframe

4-6 years

Magnitude of potential impact

Low

Likelihood Very unlikely

Are you able to provide a potential financial impact figure? Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency) 100.000

Potential financial impact figure - maximum (currency)

1,000,000

Explanation of financial impact

The method employed to calculate the financial impact figure involves considering a worst-case scenario where leaf growers in a large area are affected, posing a threat to the entire country's supply of green leaf tobacco. This figure represents the cost required to activate contingency sourcing measures. By estimating the potential consequences and assessing the risks associated with such a scenario, we can determine the financial implications and allocate resources accordingly to ensure the uninterrupted supply of green leaf tobacco.

Primary response to risk

Upstream

Increase supplier diversification

Description of response

With BAT's suppliers globally spread, mitigating the effects of severe climatic disruption, and with our business continuity management plans designed to mitigate the consequence of supply chain interruption and disruption. Our business continuity management plans were reviewed in 2022 to ensure they still mitigate the consequence of supply chain interruption and disruption. We are also responding to that risk by working extensively via a team of experts in Brazil based on our Global Leaf Agronomy Development centre looking after farmer's resilience, including breeding for resilient tobacco varieties, this will continue into at least 2023. As an additional control, we would also source tobacco from other farmers within or outside of the country.

Cost of response

1,000,000

Explanation of cost of response

The calculation of the cost of response has taken into account a worst-case scenario, considering the potential financial impact if leaf growers in a significant area are affected, which could jeopardize the country's supply of green leaf tobacco. The calculated cost specifically represents the expenses associated with activating contingency sourcing measures. This estimation has been made to account for the potential need to secure alternative sources of green leaf tobacco in order to mitigate the potential disruptions to the supply chain caused by the adverse impact on leaf growers.

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?

Yes, we have identified opportunities, and some/all are being realized

W4.3a

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

Type of opportunity Efficiency

Primary water-related opportunity

Improved water efficiency in operations

Company-specific description & strategy to realize opportunity

Improving water efficiency in our operations is considered to be strategic, as this will help BAT to reduce our reliance on the local environment and communities in which we operate. This opportunity is also associated with minor cost savings.

Across our Operations (factories and GLTs of the Group) we continue to engage closely with our factory footprint in developing and identifying a range of water savings initiatives following the lead from loss analysis and value stream mapping pilots in Pakistan, Chile & Turkey as examples, which may include the following: behavioural change programs, awareness campaigns, implementation of water conservation daily management systems improving controls and maintenance response time in strategic locations and targeted investment. For example, in South Korea, through installation of Reserve Osmosis and Ultra-Filtration we reduced water withdrawn by 42% in 2022 vs 2021 and increase the water recycled from 21.8% to 51.8% in the same period. We believe that actions like this will help BAT to reduce our reliance on the local environment and communities in which we operate. This opportunity is also associated with minor cost savings.

Since 2016 we have continued to further expand Water Roadmap studies at local sites previously restricted to water scarcity locations or end markets of any specific concern. Water Roadmap self-assessment are reviewed by sites at least annually, and actions upon are tracked to completion. As a result of water saving activities, incl. the ones under water roadmap, our water withdrawn figure was reduced by 33% in 2022 vs 2017. We expect that through further deployment of Water Roadmap & AWS action plans (following our 2021 AWS certification roll-out) across the group, which means enhancing the metering across consumption points, reinforcing maintenance response time and, where necessary, investing in appropriate effluent treatment options, we will reach a

much better performance in water management, unleashing also reuse opportunities and as a consequence of the approach, reduce water withdrawn by 35% by 2025.

Estimated timeframe for realization

4 to 6 years

Magnitude of potential financial impact

Low

Are you able to provide a potential financial impact figure? Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency) 1,730,000

Potential financial impact figure – maximum (currency) 2,600,000

Explanation of financial impact

Using estimates from external sources, BAT have assessed financial savings linked to water efficiency are around $\pounds 1.73 - 2.60$ million in the next 4 - 6 years. The estimates are calculated through direct financial savings that would be experienced once investment costs of water efficiency are realised. The potential financial impact that could result by the direct cost of water is low.

Type of opportunity

Resilience

Primary water-related opportunity

Resilience to future regulatory changes

Company-specific description & strategy to realize opportunity

Improving water resilience in our operations is considered to be strategic, as this will help BAT to reduce our reliance on the local environment and communities in which we operate.

Across the factories and GLTs of the Group we continue to focus on compliance with current regulatory requirements as the minimum standard. Wherever regulatory frameworks are weak, or enforcement is not stringent enough, EHS Policy requirements are enforced. All sites are required to comply with both regulatory and EHS Policy requirements whichever the stricter. Sites are required to obtain information on prospects for regulations changes to search for opportunities with regards to water management development. Via of Water Road Map process, which all operational sites update every 12 months, we are able to identify proactively any potential compliance and regulatory issues, with relevant action plans created, which then are embedded into

the overall EHS actions plans, this will continue to be part of our annual activities linked to our EHS strategy.

We have continued to collect the very best in class a pool of internally benchmarked initiatives for water recycling and efficiency incentive through our newly created Centre of Excellence for Water, with the aim that to use to accelerate the deployment of low capex yet yield highly positive improvements to reduce water withdrawal, this will be further enhanced over the next 24 months with the creation of "menucards" in 2022. We fully understand that in the future many countries in which we operate will limit the number of licenses granted and/or limit the amount of water extractions (in m3) per license. So, it is vital for business resilience to lower as much as possible our water withdrawal prior to regulatory changes and their enforcements.

Some examples of countries in which we have been making considerable progress are Chile and Pakistan among others. In addition to the above BAT completed phases 1 & 2 of the TCFD incorporating the transitional risks covering water within the scenario and materiality analysis.

Estimated timeframe for realization

4 to 6 years

Magnitude of potential financial impact

Low

- Are you able to provide a potential financial impact figure? Yes, an estimated range
- Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)

1,300,000

Potential financial impact figure – maximum (currency) 3,100,000

Explanation of financial impact

Using estimates from external sources, BAT have assessed financial savings linked to water resilience are around $\pounds 1.30 - 3.10$ million in the next 4 - 6 years. Within BAT operations boundaries there are few processes that are water intensive. The biggest resilience challenge resides in the supply chain, especially in the event of tobacco growers' irrigations requirements. We develop in the field practices and transfer know how to make sure water efficiency is part of the farmers operating model. We want to make sure our tobacco suppliers have a sound and healthy business which guarantees a stable income source to themselves and their families. The better educated, the more practices they dominate to produce with less water every crop cycle, the better it will be for their own individual resilience as well as BAT's.

Type of opportunity

Other

Primary water-related opportunity

Other, please specify Reduce land and water needs for tobacco

Company-specific description & strategy to realize opportunity

Reducing both land and water needs for tobacco growing in our operations is considered to be strategic, as this will help BAT to reduce our reliance on the local environment and communities in which we operate.

BAT continues to seek opportunities to reduce the amount of land and water needed to produce green tobacco leaves by the farmers. The strategy implies increasing farmers' productivity per planted area and reduce the amount of area that requires irrigation. Adopting sustainable irrigation systems as drip irrigation has increased the yield by 20 to 30% in applicable farmers in the south of Brazil where drip irrigation is not yet affordable, such as in Bangladesh, recommendation to reduce water volume/ha were developed Sustainable soil Best Practices are defined and recommended to Leaf Operations, actually 65% of the contracted farmers have applied the BAT recommended Best Practice Guidelines on water conservation.

Estimated timeframe for realization

4 to 6 years

Magnitude of potential financial impact

Low

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency) 102,600

Potential financial impact figure – maximum (currency) 1,300,000

Explanation of financial impact

Using estimates from external sources, BAT have assessed financial savings linked to land reduction and water needs are around $\pounds 102,600 - \pounds 1.30$ million in the next 4 - 6 years. Within BAT operations boundaries there are few processes that are water intensive. The biggest resilience challenge resides in the supply chain, especially in the event of tobacco growers' irrigations requirements. We develop in the field practices and transfer know how to make sure water efficiency is part of the farmers operating model. We want to make sure our tobacco suppliers have a sound and healthy business which guarantees a stable income source to themselves and their families. The better

educated, the more practices they dominate to produce with less water every crop cycle, the better it will be for their own individual resilience as well as BAT's.

W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Facility reference number Facility 1 Facility name (optional) Bangladesh - Dhaka factory Country/Area & River basin Bangladesh Other, please specify Bhramaputra Latitude 23.781017 Longitude 90.396588 Located in area with water stress No Total water withdrawals at this facility (megaliters/year) 130.3 Comparison of total withdrawals with previous reporting year Lower Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes 0 Withdrawals from brackish surface water/seawater 0 Withdrawals from groundwater - renewable 129.8 Withdrawals from groundwater - non-renewable

0

Withdrawals from produced/entrained water 0 Withdrawals from third party sources 0.5 Total water discharges at this facility (megaliters/year) 27.9 Comparison of total discharges with previous reporting year Much lower Discharges to fresh surface water 0 Discharges to brackish surface water/seawater 0 **Discharges to groundwater** 0 **Discharges to third party destinations** 27.9 Total water consumption at this facility (megaliters/year)

102.4

Comparison of total consumption with previous reporting year Higher

Please explain

There has been a decrease in water withdrawn (-14%) vs 2021 due to decreased production and partial replacement of fresh water withdrawn with recycled water. Water discharge decreased (-51%) due to increased water recycling/reuse on site. Water consumption increased (+8%) due to intensified water recycling for gardening, cleaning and other purposes. Trend thresholds are applied consistently to all our businesses: anything over +/- 5% is 'Higher'/'Lower' compared to the previous year, and anything +/- 30% is 'Much higher'/'Much lower'.

Facility reference number

Facility 2

Facility name (optional)

Bangladesh - Kushtia GLT

Country/Area & River basin Bangladesh

Ganges - Brahmaputra Latitude 23.887236 Longitude 89.108158 Located in area with water stress No Total water withdrawals at this facility (megaliters/year) 34.4 Comparison of total withdrawals with previous reporting year Higher Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes 0.2 Withdrawals from brackish surface water/seawater 0 Withdrawals from groundwater - renewable 32.1 Withdrawals from groundwater - non-renewable 0 Withdrawals from produced/entrained water 0 Withdrawals from third party sources 2.1 Total water discharges at this facility (megaliters/year) 31 Comparison of total discharges with previous reporting year Higher Discharges to fresh surface water 0 Discharges to brackish surface water/seawater 0 **Discharges to groundwater** 0

Discharges to third party destinations

31

Total water consumption at this facility (megaliters/year)

3.4

Comparison of total consumption with previous reporting year Higher

Please explain

There has been an increase in water withdrawn (+15%) vs 2021 due to increased volumes of leaf processing. This led to increase in water needs for both production and social needs. Water discharge increased (+15%) almost proportionately driven by the same reason. Water consumption increased (+15%) in line with trends of the above parameters. Trend thresholds are applied consistently to all our businesses: anything over +/- 5% is 'Higher'/'Lower' compared to the previous year, and anything +/-30% is 'Much higher'/'Much lower'.

Facility reference number

Facility 3

Facility name (optional)

Chile - Casablanca

Country/Area & River basin

Chile Other, please specify North Chile, Pacific Coast

Latitude

-33.305433

Longitude

-71.408689

Located in area with water stress

Yes

Total water withdrawals at this facility (megaliters/year)

32.4

Comparison of total withdrawals with previous reporting year About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

Withdrawals from brackish surface water/seawater

0

Withdrawals from groundwater - renewable 32.4 Withdrawals from groundwater - non-renewable 0 Withdrawals from produced/entrained water 0 Withdrawals from third party sources 0 Total water discharges at this facility (megaliters/year) 0.1 Comparison of total discharges with previous reporting year About the same Discharges to fresh surface water 0.1 Discharges to brackish surface water/seawater 0 **Discharges to groundwater** 0 **Discharges to third party destinations**

0

Total water consumption at this facility (megaliters/year)

32.3

Comparison of total consumption with previous reporting year

About the same

Please explain

Water withdrawn volumes stayed about the same (+1%). The total water discharge was nearly negligible, measuring close to 0 at 0.1. This can be attributed to the effective implementation of water recycling and reuse practices within our operations. Despite a marginal increase in water withdrawal volumes (+1%), the negligible level of water discharge remained consistent with the previous year. By prioritizing the recycling and reuse of water on-site, whether treated or untreated, we significantly minimize the need for external water discharge. Additionally, water consumption also experienced a slight increase (+1%), aligning with the overall trends observed in water withdrawal and discharge. The close-to-zero water discharge underscores our approach to responsible water management and the conservation of this valuable resource. These practices, along with the consistent application of trend thresholds, ensure that our businesses

strive to operate within sustainable parameters. Trend thresholds are applied consistently to all our businesses: anything over +/- 5% is 'Higher'/'Lower' compared to the previous year, and anything +/-30% is 'Much higher'/'Much lower'.

Facility reference number

Facility 4

Facility name (optional)

Indonesia -Malang Factory

Country/Area & River basin

Indonesia **Brantas**

Latitude

-7.966

Longitude

112.6326

Located in area with water stress

No

Total water withdrawals at this facility (megaliters/year)

86.5

Comparison of total withdrawals with previous reporting year Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

Withdrawals from brackish surface water/seawater 0

Withdrawals from groundwater - renewable 86.5

Withdrawals from groundwater - non-renewable

0

Withdrawals from produced/entrained water 0

Withdrawals from third party sources 0

Total water discharges at this facility (megaliters/year)

78.4

Comparison of total discharges with previous reporting year Much higher

Discharges to fresh surface water 78.4

Discharges to brackish surface water/seawater

0

Discharges to groundwater

0

Discharges to third party destinations

0

Total water consumption at this facility (megaliters/year)

8.1

Comparison of total consumption with previous reporting year

Much lower

Please explain

There has been a decrease in water withdrawn (-17%) vs 2021 due to water efficiency projects and on-going factory consolidation. Water discharge increased (+47%) vs 2021 due major maintenance at water treatment plant in the first half of the year which prevented the factory from recycling water, hence water was discharged. Water consumption decreased (-84%) in line with the trends of the above parameters. Trend thresholds are applied consistently to all our businesses: anything over +/- 5% is 'Higher'/'Lower' compared to the previous year, and anything +/-30% is 'Much higher'/'Much lower'.

Facility reference number Facility 5

Facility name (optional) Kenya - Nairobi

Country/Area & River basin

Kenya Galana

Latitude

-1.305661

Longitude

36.855717

Located in area with water stress No
Total water withdrawals at this facility (megaliters/year) 34.1
Comparison of total withdrawals with previous reporting year Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
Withdrawals from brackish surface water/seawater
Withdrawals from groundwater - renewable 30.7
Withdrawals from groundwater - non-renewable
Withdrawals from produced/entrained water 0
Withdrawals from third party sources 3.4
Total water discharges at this facility (megaliters/year) 10.8
Comparison of total discharges with previous reporting year Lower
Discharges to fresh surface water 0
Discharges to brackish surface water/seawater
Discharges to groundwater
Discharges to third party destinations 10.8
Total water consumption at this facility (megaliters/year) 23.3
Comparison of total consumption with previous reporting year Lower

Please explain

There has been a decrease in water withdrawn (-12%) vs 2021 due to lower production and water efficiency projects. Water discharge decreased (-13%) due to the same reasons. Water consumption decreased (-12%) in line with trends of the above parameters. Trend thresholds are applied consistently to all our businesses: anything over +/- 5% is 'Higher'/'Lower' compared to the previous year, and anything +/-30% is 'Much higher'/'Much lower'.

Facility reference number Facility 6
Facility name (optional) Mexico - Monterrey
Country/Area & River basin Mexico Bravo
Latitude 25.686275
Longitude -100.33982
Located in area with water stress Yes
Total water withdrawals at this facility (megaliters/year) 82.1
Comparison of total withdrawals with previous reporting year Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
Withdrawals from brackish surface water/seawater
Withdrawals from groundwater - renewable 12.7
Withdrawals from groundwater - non-renewable
Withdrawals from produced/entrained water

Withdrawals from third party sources 69.4

Total water discharges at this facility (megaliters/year) 58.6

Comparison of total discharges with previous reporting year Lower

Discharges to fresh surface water

0

Discharges to brackish surface water/seawater

0

Discharges to groundwater

0

Discharges to third party destinations

58.6

Total water consumption at this facility (megaliters/year)

23.5

Comparison of total consumption with previous reporting year Higher

Please explain

There has been a decrease in water withdrawn (-11%) vs 2021 due to lower production and water efficiency projects, such as optimized humidification in manufacturing departments. Water discharge decreased (-17%) due to the same reasons as well as increased water recycling. Water consumption increased (+10%) in line with trends of the above parameters. The increase in due to intensified water recycling for gardening, cleaning and other purposes Trend thresholds are applied consistently to all our businesses: anything over +/- 5% is 'Higher'/'Lower' compared to the previous year, and anything +/-30% is 'Much higher'/'Much lower'.

Facility reference number

Facility 7

Facility name (optional)

Nigeria - Ibadan factory

Country/Area & River basin

Nigeria Other, please specify Oshun

Latitude

7.30816 Longitude 3.869118 Located in area with water stress No Total water withdrawals at this facility (megaliters/year) 51.5 Comparison of total withdrawals with previous reporting year Lower Withdrawals from fresh surface water, including rainwater, water from wetlands. rivers and lakes 0 Withdrawals from brackish surface water/seawater 0 Withdrawals from groundwater - renewable 51.5 Withdrawals from groundwater - non-renewable 0 Withdrawals from produced/entrained water 0 Withdrawals from third party sources 0 Total water discharges at this facility (megaliters/year) 0.1 Comparison of total discharges with previous reporting year Much lower Discharges to fresh surface water 0.1 Discharges to brackish surface water/seawater 0 **Discharges to groundwater** 0 **Discharges to third party destinations** 0

Total water consumption at this facility (megaliters/year)

51.4

Comparison of total consumption with previous reporting year Much higher

Please explain

There has been a decrease in water withdrawn (-8%) vs 2021 despite increased production output due to water saving technologies and practices introduced based on the results of value stream mapping which enabled the identification of areas where water consumption could be minimized. The Total water discharge was nearly negligible, measuring close to 0 at 0.1. The implementation of an on-site water treatment plant allowed for the recycling of water, leading to a remarkable decrease in water discharge (-99%) as water was reused for irrigation, cleaning, and other purposes. This comprehensive approach to water management has ensured efficient utilization of this vital resource. Despite these positive outcomes, water consumption increased significantly (+2904%) as a result of the new water recycling scheme, indicating a shift towards sustainable water practices. The consistent application of trend thresholds across all businesses helps identify notable changes in water usage, with anything exceeding +/- 5% considered 'Higher' or 'Lower,' and anything surpassing +/-30% labelled as 'Much higher' or 'Much lower' compared to the previous year."

Facility reference number

Facility 8

Facility name (optional) Pakistan - Akora Factory & GLT

Country/Area & River basin

Pakistan Other, please specify Kabul / Swat / Alingar

Latitude

33.994118

Longitude

72.14468

Located in area with water stress

No

Total water withdrawals at this facility (megaliters/year)

92.3

Comparison of total withdrawals with previous reporting year

About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
Withdrawals from brackish surface water/seawater
Withdrawals from groundwater - renewable 92.3
Withdrawals from groundwater - non-renewable
Withdrawals from produced/entrained water
Withdrawals from third party sources
Total water discharges at this facility (megaliters/year) 5.8
Comparison of total discharges with previous reporting year Much higher
Discharges to fresh surface water 5.8
Discharges to brackish surface water/seawater
Discharges to groundwater 0
Discharges to third party destinations 0
Total water consumption at this facility (megaliters/year) 86.5
Comparison of total consumption with previous reporting year

Lower

Please explain

There has been a slight decrease in water withdrawn (-2%) vs 2021 due to decreased production output. Water discharge increased (+139%) due to major maintenance activities are water treatment plant in the beginning of the year preventing water recycling, hence need to discharge water. % decrease is significant since water discharged amounts are normally minor and even a small change in the absolute figures gives significant % increase. Water consumption decreased (-5%) in line with the trends in the above parameters. Trend thresholds are applied consistently to all our

businesses: anything over +/- 5% is 'Higher'/'Lower' compared to the previous year, and anything +/-30% is 'Much higher'/'Much lower'.

Facility reference number Facility 9 Facility name (optional) Pakistan - Jhelum factory Country/Area & River basin Pakistan Other, please specify Jhelum Latitude 32.58 Longitude 73.41 Located in area with water stress Yes Total water withdrawals at this facility (megaliters/year) 52.5 Comparison of total withdrawals with previous reporting year Lower Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes 0 Withdrawals from brackish surface water/seawater 0 Withdrawals from groundwater - renewable 52.5 Withdrawals from groundwater - non-renewable 0 Withdrawals from produced/entrained water 0 Withdrawals from third party sources 0 Total water discharges at this facility (megaliters/year)

0.1

Comparison of total discharges with previous reporting year About the same

Discharges to fresh surface water

0.1

Discharges to brackish surface water/seawater

0

Discharges to groundwater

0

Discharges to third party destinations

0

Total water consumption at this facility (megaliters/year)

52.4

Comparison of total consumption with previous reporting year

Lower

Please explain

There has been a decrease in water withdrawn (-11%) vs 2021, which can be attributed to a minor reduction in production output and intensified water recycling which enabled to replace some of fresh water with reclaimed water. The Total water discharge was nearly negligible, measuring close to 0 at 0.1, similar to the levels observed in 2021, as a result of extensive water recycling and reuse practices implemented with or without on-site treatment. These measures ensured that the majority of the water used within the operations was conserved and repurposed. Water consumption decreased by 11%, aligning with the overall trends observed in the aforementioned parameters. To consistently monitor and evaluate performance, trend thresholds are uniformly applied to all business units, categorizing any changes exceeding +/- 5% as 'Higher' or 'Lower' compared to the previous year, while those surpassing +/-30% are classified as 'Much higher' or 'Much lower'.

Facility reference number Facility 10

Facility name (optional) Romania - Ploiesti

Country/Area & River basin

Romania Other, please specify lalomita

Latitude 44.94522
Longitude 25.98228
Located in area with water stress Yes
Total water withdrawals at this facility (megaliters/year) 133.9
Comparison of total withdrawals with previous reporting year Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
Withdrawals from brackish surface water/seawater
Withdrawals from groundwater - renewable 133.9
Withdrawals from groundwater - non-renewable
Withdrawals from produced/entrained water
Withdrawals from third party sources
Total water discharges at this facility (megaliters/year) 66.3
Comparison of total discharges with previous reporting year Lower
Discharges to fresh surface water 0
Discharges to brackish surface water/seawater
Discharges to groundwater
Discharges to third party destinations

Total water consumption at this facility (megaliters/year) 67.6

Comparison of total consumption with previous reporting year Higher

Please explain

There has been a decrease in water withdrawn (-13%) vs 2021 due to water efficiency measures. Water discharge decreased (-30%) as the result of the trends for water withdrawn and water consumption. Water consumption increased (+15%) due to increased water consumption for humidification, which is driven by occupational environment and production quality needs. Trend thresholds are applied consistently to all our businesses: anything over +/- 5% is 'Higher'/'Lower' compared to the previous year, and anything +/-30% is 'Much higher'/'Much lower'.

Facility reference number

Facility 12

Facility name (optional)

Viet Nam - Operations

Country/Area & River basin

Viet Nam Other, please specify Song Be Delta, Viet Nam Coast

Latitude

10.95972

Longitude

106.93193

Located in area with water stress

No

Total water withdrawals at this facility (megaliters/year)

20.2

Comparison of total withdrawals with previous reporting year Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0.7

Withdrawals from brackish surface water/seawater

0

Withdrawals from groundwater - renewable 0 Withdrawals from groundwater - non-renewable 0 Withdrawals from produced/entrained water 0 Withdrawals from third party sources 19.5 Total water discharges at this facility (megaliters/year) 0.5 Comparison of total discharges with previous reporting year Much lower Discharges to fresh surface water 0.5 Discharges to brackish surface water/seawater 0 **Discharges to groundwater** 0 **Discharges to third party destinations** 0 Total water consumption at this facility (megaliters/year) 19.7 Comparison of total consumption with previous reporting year

Lower

Please explain

There has been a decrease in water withdrawn (-11%) vs 2022 due to water recycling/reuse in air scrubber which allowed to reduce the need for fresh water. Water discharge decreased (-68%) due to increased water recycling/reuse on site. Water consumption decreased (-7%) in line with trends of the above parameters. Trend thresholds are applied consistently to all our businesses: anything over +/- 5% is 'Higher'/'Lower' compared to the previous year, and anything +/-30% is 'Much higher'/'Much lower'.

Facility reference number Facility 11

Facility name (optional)

Uzbe	kistan - Samarakand Factory & Urgut GLT
Uzbe Othe	Area & River basin kistan , please specify Zeravshan
Latitude 39.42	02
Longitud 67.03	
Located Yes	in area with water stress
Total wa 58.3	ter withdrawals at this facility (megaliters/year)
Compar i Lowe	son of total withdrawals with previous reporting year
	vals from fresh surface water, including rainwater, water from s, rivers and lakes
Withdrav 0	vals from brackish surface water/seawater
Withdra 58.3	vals from groundwater - renewable
Withdrav 0	vals from groundwater - non-renewable
Withdrav 0	vals from produced/entrained water
Withdrav 0	vals from third party sources
Total wa 25.2	ter discharges at this facility (megaliters/year)
Compar i Highe	son of total discharges with previous reporting year
Discharg 18.4	jes to fresh surface water
Dischar	es to brackish surface water/seawater

0

Discharges to groundwater

0

Discharges to third party destinations

6.8

Total water consumption at this facility (megaliters/year)

33.1

Comparison of total consumption with previous reporting year Much lower

Please explain

There has been a decrease in water withdrawn (-19%) vs 2020 due to water efficiency measures at both factory and green leaf threshing plant. Water discharge increased (+14%) in line with the trends in wate withdrawn and water consumption. Water consumption decreased (-34%) due to decrease in water withdrawn and due to lower humidification needs in production - the amount of water consumed for tobacco processing fluctuates depending on tobacco leaf quality. Trend thresholds are applied consistently to all our businesses: anything over +/- 5% is 'Higher'/'Lower' compared to the previous year, and anything +/-30% is 'Much higher'/'Much lower'.

W5.1a

(W5.1a) For the facilities referenced in W5.1, what proportion of water accounting data has been third party verified?

Water withdrawals - total volumes

% verified 76-100

Verification standard used

BAT engaged KPMG to perform a limited assurance on selected sustainability data presented in our 2022 Combined Annual and ESG Report. Total Water Withdrawn was one of the metrics Assured. The assurance engagement has been planned and performed in accordance with the International Standard for Assurance Engagements (ISAE 3000 Revised). Assurance is performed annually.

Water withdrawals - volume by source

% verified

Not relevant

Please explain

Although Water withdrawals with breakdown by source in 2022 was not included within our KPMG Limited Assurance as it wasn't defined internally as an "associated target", we continued to monitor these parameters. We are progressing with certification of our Operations sites, focusing of facilities in Water Stress and Water Risk areas, as per Alliance for Water Stewardship (AWS). We are considering the needs to set additional targets at the Group or at the facility level and will consequently review the scope of 3rd party water-related data verification.

Water withdrawals - quality by standard water quality parameters

% verified

Not relevant

Please explain

Although Water withdrawals quality by standard water quality parameters in 2022 was not included within our KPMG Limited Assurance as it wasn't defined internally as an "associated target", we continued to monitor these parameters. We are progressing with certification of our Operations sites, focusing of facilities in Water Stress and Water Risk areas, as per Alliance for Water Stewardship (AWS). We are considering the needs to set additional targets at the Group or at the facility level and will consequently review the scope of 3rd party water-related data verification.

Water discharges - total volumes

% verified

76-100

Verification standard used

BAT engaged KPMG to perform a limited assurance on selected sustainability data presented in our Combined Annual and ESG Report 2022. Total Water Discharged was one of the metrics Assured. The assurance engagement has been planned and performed in accordance with the International Standard for Assurance Engagements (ISAE 3000 Revised). Assurance is performed annually.

Water discharges - volume by destination

% verified

Not relevant

Please explain

Although Water discharges with breakdown by destination in 2022 was not included within our KPMG Limited Assurance as it wasn't defined internally as an "associated target", we continued to monitor these parameters. We are progressing with certification of our Operations sites, focusing of facilities in Water Stress and Water Risk areas, as per Alliance for Water Stewardship (AWS). We are considering the needs to set additional targets at the Group or at the facility level and will consequently review the scope of 3rd party water-related data verification.

Water discharges - volume by final treatment level

% verified

Not relevant

Please explain

Although Water discharges with breakdown by final treatment level in 2022 was not included within our KPMG Limited Assurance as it wasn't defined internally as an "associated target", we continued to monitor these parameters. We are progressing with certification of our Operations sites, focusing of facilities in Water Stress and Water Risk areas, as per Alliance for Water Stewardship (AWS). We are considering the needs to set additional targets at the Group or at the facility level and will consequently review the scope of 3rd party water-related data verification.

Water discharges - quality by standard water quality parameters

% verified

Not relevant

Please explain

Although Water discharged quality by standard water quality parameters in 2022 was not included within our KPMG Limited Assurance as it wasn't defined internally as an "associated target", we continued to monitor these parameters. We are progressing with certification of our Operations sites, focusing of facilities in Water Stress and Water Risk areas, as per Alliance for Water Stewardship (AWS). We are considering the needs to set additional targets at the Group or at the facility level and will consequently review the scope of 3rd party water-related data verification.

Water consumption – total volume

% verified

Not relevant

Please explain

Although Water consumption volume in 2022 was not included within our KPMG Limited Assurance as it wasn't defined internally as an "associated target", we continued to monitor these parameters.

While Water consumption is a calculated metric equal to Water withdrawn minus Water discharged, which is relevant since we don't have material amounts of water stored at our sites, the fact that Water withdrawn and Water discharge parameters are assured gives us sufficient confidence in the accuracy of this parameter.

We are progressing with certification of our Operations sites, focusing of facilities in Water Stress and Water Risk areas, as per Alliance for Water Stewardship (AWS). We are considering the needs to set additional targets at the Group or at the facility level and will consequently review the scope of 3rd party water-related data verification.

W6. Governance

W6.1

(W6.1) Does your organization have a water policy?

Yes, we have a documented water policy that is publicly available

W6.1a

(W6.1a) Select the options that best describe the scope and content of your water policy.

	Scope	Content	Please explain
Row 1	Company- wide	Description of the scope (including value chain stages) covered by the policy Description of business dependency on water Description of business impact on water Commitment to align with international frameworks, standards, and widely- recognized water initiatives Commitment to prevent, minimize, and control pollution Commitment to reduce water withdrawal and/or consumption volumes in direct operations Commitment to reduce water withdrawal and/or consumption volumes in direct operations Commitment to safely managed Water, Sanitation and Hygiene (WASH) in the workplace Commitment to safely managed Water, Sanitation and Hygiene (WASH) in local communities	Water stewardship is a key element of our Group Environment Policy. The policy recognises the human right to water, through the promotion of WASH across our facilities, farms and communities. The policy is Group-wide in scope, to ensure a consistent understanding and application of our commitments and targets, which include reducing the amount of water withdrawn by 35% by 202, increasing our water recycling rate by 35% by 2025 (both compared to our 2017 baseline), supporting the conservation of freshwater ecosystems, collective action to support water stewardship across our value chain, this includes supporting our directly contracted farmers to use water more efficiently and preventing, minimising and controlling water pollution. Our policy is aligned to the Sustainable Development Goals and states that we are working towards 100% of Group companies' operations sites being certified to the Alliance for Water Stewardship's management standard. Our policy guides operational action across our organisation, such as: assessments of long-term water supply and demand requirements across all operational sites; all operational sites conducing water roadmap self-assessment, generating a significant list of actions (initiatives or projects) identified for implementation over the coming years. The policy also describes BAT's dependency on natural resources e.g. water used in our own operations and value chain and focus on understanding the connection between water and climate change. The has led to initiatives such as supporting our directly contracted farmers to develop,

		Commitment to stakeholder education and capacity building on water security Commitment to water stewardship and/or collective action Commitment to the conservation of freshwater ecosystems Commitments beyond regulatory compliance Reference to company water-related targets Acknowledgement of the human right to water and sanitation Recognition of environmental linkages, for example, due to climate change	advance and implement environmentally responsible agriculture practices and biodiversity protection best practices, to help preserve natural capital, promote prosperous livelihoods and increase farmers' resilience to climate change. We also work with our suppliers to reduce environmental impacts of our products across their lifecycle, this includes water use. Our Internal Global Water Management Standard supports our Group Environment Policy by providing guidance to all operational sites, standardising practices and water security priorities. For example, setting more stringent water recycling targets. We have water performance standards for our direct operations and suppliers, detailed in our Group EHS Policy Manual. Our internal Global Water Standard sets out our water stewardship goals, commitment to public policy initiatives, goals and targets and commitment to go beyond regulatory compliance.
--	--	--	--

⁰ ¹Env Policy BAT com 25 Jul 2023 - Final_.pdf

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization? $_{\mbox{Yes}}$

W6.2a

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

Position of individual or committee	Responsibilities for water-related issues
Board-level committee	The Audit Committee is responsible for reviewing the effectiveness of the Group's risk management and internal controls systems, including those relating to water. The Audit Committee reviews the Group risk register twice a year and regularly reviews the Group's progress against water targets, for example, our target for 35% reduction in water withdrawals by 2025 and 100% operational sites Alliance for Water Stewardship certified by 2025 (see targets in W8). The Audit Committee also receives reports from the Group's Regional Audit and CSR committees and Corporate Audit Committee, which monitor the effectiveness of business risk management and internal controls across regions and global functions. The Chair of the Audit Committee provides a full briefing to the Board following each Audit

Committee meeting, including decisions taken and key topics discussed by the Audit Committee.

Example of water-related decision: In 2022, the Audit Committee oversaw the work of the Group's external provider of assurance over ESG metrics and related information, which includes Group water targets. The Audit Committee also reviewed our Group risk register, which includes water risks and their impact in our tobacco supply chain to ensure appropriate monitoring and reporting mechanisms are in place (see page 345, 2022 BAT Combined Annual and ESG Report and Form 20-F 'Risk: Inability to obtain adequate supplies of tobacco leaf').

W6.2b

	Frequency that water-related issues are a scheduled agenda item	Governance mechanisms into which water-related issues are integrated	Please explain
Row 1	Scheduled - some meetings	Monitoring implementation and performance Monitoring progress towards corporate targets Overseeing and guiding public policy engagement Overseeing major capital expenditures Overseeing the setting of corporate targets Providing employee incentives Reviewing and guiding annual budgets Reviewing and guiding business plans Reviewing and guiding corporate responsibility strategy	The Board reviews the Group's water stewardship initiatives, targets, and performance twice per year, through a briefing by the Director, Operations, and reviews the Group risk register annually, which takes account of water-related risks. The Board has approved all Group environmental targets, including our 2025 water withdrawal targets. The Board reviews the Group budget annually, which takes into account capital allocation to deliver the Group's water-related targets. The Board reviews and approves the BAT Combined Annual and ESG Report and Form 20-F, on an annual basis, which reports on the Group's progress on water stewardship matters. The Board also reviews our approach to stakeholder engagement and how the Group responds to stakeholder considerations. In 2022, these considerations included the Group's progress in monitoring water usage in our tobacco supply chain. The Audit Committee reviews the Group risk register twice per year and regularly reviews the Group's progress against its ESG metrics, including targets for water conservation. This includes our 2025 roadmap target of reducing the total amount of water withdrawn by 35% (vs 2017 baseline).

(W6.2b) Provide further details on the board's oversight of water-related issues.

Reviewing and guiding major plans of action Reviewing and guiding risk management policies Reviewing and guiding strategy Setting performance objectives	The Remuneration Committee determines any annual changes to the remuneration of Management Board members. This may include salary adjustments, which are determined considering performance against individual objectives.
---	---

W6.2d

(W6.2d) Does your organization have at least one board member with competence on water-related issues?

	Board member(s) have competence on water-related issues	Criteria used to assess competence of board member(s) on water- related issues
Row 1	Yes	The criteria used to assess board member(s) competence on water- related issues, is if board members understand how water-related issues affect the BAT Group and water-related risks and opportunities in the BAT Group context. Board members have experience in management of or oversight of operational companies within industries impacted by water-related issues, where judgements are required to manage water-related risks and opportunities. These industries (of which one or more board members has experience) include fast moving consumable goods, for example, global beverages, where water stress, exacerbated by climate change presents a major risk to product production; and mining where, activities expose the company to water-related physical climate risks, which must be managed appropriately.

W6.3

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s) Other C-Suite Officer, please specify Director, Operations

Water-related responsibilities of this position Assessing future trends in water demand

Assessing water-related risks and opportunities Managing water-related risks and opportunities Conducting water-related scenario analysis Setting water-related corporate targets Monitoring progress against water-related corporate targets Managing public policy engagement that may impact water security Managing value chain engagement on water-related issues Integrating water-related issues into business strategy Managing annual budgets relating to water security Managing major capital and/or operational expenditures related to low water impact products or services (including R&D) Providing water-related employee incentives

Frequency of reporting to the board on water-related issues

Quarterly

Please explain

The Director Operations (DO), member of the Management Board, The DO is responsible for delivering the organization's water strategy (own operations & tobacco supply chain), performance against water targets (see W8), identifying & addressing risks & opportunities (drought & flooding can impact tobacco growing, pg. 345 of 2022 ARA). The Board receives water-related updates including: progress report twice per year by the DO on sustainability progress including water targets (see W8), annual review of the risk register which includes water-related risks, annual review & approval of the ARA which describes our management approach & performance in water-related issues for the year (see pg. 58 & 59 of 2022 ARA) & other updates e.g. review of approach to stakeholder engagement, which includes monitoring of water usage in our supply chain. The DO receives updates on progress on water-related strategy & targets through management level forums & is supported by the functional heads & teams.

W6.4

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

	Provide incentives for management of water-related issues	Comment
Row	Yes	BAT uses different mechanisms to incentivise the management of
1		water-related issues.
		We incentivise some but not all of our employees by creating a positive
		link between the management of a water-related performance objective
		& eligibility for an annual bonus. Eligibility to receive an annual bonus
		under the Group IEIS scheme is impacted by annual performance
		assessments, which considers in the round, progress against
		performance objectives, which may include water-related metrics, non-

environmental metrics and other factors. The value of the bonus is tied to non-environmental metrics set out in the Remuneration Policy described on page 165 of the 2022 Combined Annual and ESG Report.
We also use non-monetary incentives for example, through recognition in our internal scheme 'Celebrating our Success' which highlights best practice on operational initiatives including those linked to water- related activities.

W6.4a

(W6.4a) What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?

	Role(s) entitled to incentive	Performance indicator	Contribution of incentives to the achievement of your organization's water commitments	Please explain
Monetary reward	Other C-suite Officer Director, Operations	Reduction of water withdrawals – direct operations Reduction in water consumption volumes – direct operations Improvements in water efficiency – direct operations Improvements in wastewater quality – direct operations Reduction of water pollution incidents Reduction or phase-out of hazardous substances	The performance indicators reported, reduction of water withdrawals, reduction in water consumption vols, improvements in water efficiency, improvements in wastewater quality, reduction of water pollution incidents, reduction/phase- out of hazardous substances & company performance against water-related sustainability indices are directly linked to BAT's progress in achieving its water commitments. The rationale for incentives and indicator selection is based on the recognition of water management's significance for sustainable farming and efficient	Timeframe: The performance indicators are monitored on an annual basis to evaluate advancements towards our water targets. These targets are established for each year, and the performance is assessed relative to a designated baseline, which is 2017 in this instance. Regional, sectoral, and/or operational context: The performance indicators take into account the specific context of our operations. They are designed to address the water management challenges and opportunities within our sector, considering factors such as the availability of

	Company	operations.	water resources, local
	performance	We have established	regulations, and industry
	against a	glidepaths with annual	best practices.
	sustainability	milestones to track	
	index with water-	progress of our external	The threshold used to
	related factors	water targets. The	indicate successful
	(e.g., DJSI, CDP	Director's performance	performance is defined
	Water Security	objectives linked to	based on the targeted
	score, etc.)	meeting or exceeding the	reduction or improvement
		annual milestones, which	specified in the glidepaths.
		contribute to eligibility for a	For example, in 2022, the
		bonus payment. In 2022,	target was a reduction of
		the Director met the water-	30% in water withdrawals
		related performance	vs the 2017 baseline.
		objectives. BAT's	
		reduction of water	Exceeding this target by
		withdrawn by 32% (vs	achieving a reduction of
		2017) in 2022 contributed	32% indicated successful
		to this and reflected a	yearly performance. How
		reduction in water	performance impacts the
		consumption vols &	incentive/reward: The
		improvements in water	performance of the
		efficiency in our direct	Director, Operations
		operations.	directly impacts their
			eligibility for a bonus
		Future benefits: Our water	payment. The achievement
		recycling target of 30% by	of annual milestones and
		2025 and the certification	performance objectives,
		of all Operations sites by	related to water targets, is
		AWS incentivises reducing	a factor in determining the
		overall water consumption,	incentive. By meeting or
		increasing water reuse &	exceeding the specified performance thresholds,
		improving operational efficiencies. The Director's	the Director demonstrates
		performance objective	effective water
		related to BAT's CDP	management and
		Disclosure reinforces the	contributes to the
		sustainability of our Direct	organization's overall
		Operations and drives	sustainability goals,
		further progress on our	thereby contributing to
		water commitments.	eligibility for the financial
		indian ooniniitinonia.	reward tied to their
			performance.

Non-	Other C-suite	Reduction of	Recognition of the best	On a quarterly basis,
monetary	Officer	water	water-related	BAT's Operations function
reward		withdrawals -	achievements delivered by	runs the 'Celebrating our
reward	Director, Operations	direct operations	our global teams is	Success' programme (non-
	operatione	-	important in driving the	monetary recognition), led
		Reduction in	achievement of BAT's	by our Director, Operations
		water	external water-related	(a C-Suite Officer) where
		consumption	targets, which we aim to	nominations of outstanding
		volumes – direct	deliver by 2025: Reduction	achievement across the
		operations	of Water Withdrawn by	function are celebrated. All
		Improvements in	35% (vs 2017), 30% Water	Regions and Sub-
		water efficiency -	Recycled (vs 2017), 30% Water	Functions across the
		direct operations	100% Sites Alliance for	
				Global Operations team
			Water Stewardship Certified. Overall target	are invited to submit nominations and the
			achievement is only	
			possible if our global	winners are announced and celebrated during the
			operations sites achieve	quarterly Global
			their individual targets that	Operations Webcast, to
			•	which all Global
			are aligned to these, and defined by target	
				Operations employees are invited.
			glidepaths.	In 2022, 11 nominations
			BAT's internal 'Celebrating	were received relating to
			our Success' programme	Water related initiatives.
			for our Global Operations	Examples of the water-
			function helps to support	related nominations
			the delivery of these	included: an increase in
			individual site-level targets	water recycling at our
			though both sharing best	Kenya Factory (from 2% -
			practice and celebrating	25%) and the introduction
			the best contributions at	of a rainwater harvesting
			the highest level.	initiative at our Malaysia
			Increasing awareness of	site. A nomination from
			innovation and exemplary	our Korea Factory in
			performance at site-level	Sacheon which included,
			helps other sites in driving	amongst other ESG
			their own targets and	initiatives, a reduction in
			ambitions. The potential of	
			being celebrated at the	(vs 2021), was selected as
			highest level of the Global	one of the programme's
			Operations function (the	winners in Q2 2022. In
			winners are announced by	2022, at group level, we
			our Director, Operations –	achieved a reduction of
			a C-Suite Officer and	32.7% in Water Withdrawn
				SZ.7 /0 III WALEI WILIIUIAWI

		Management Board	(vs 2017), a reduction of
		member) and this	5% vs 2021 – achieving
		recognition also being	this and making further
		shared with the entire	progress towards our 2025
		Global function, also	targets is made possible by
		incentivises achievement	exemplary performance at
		above and beyond sites	site level.
		own targets.	
- 1			

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?

No

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

Yes (you may attach the report - this is optional)

BAT_Annual_Report_Form_20-F_2022 (1).pdf

W7. Business strategy

W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

	Are water- related issues integrated?	Long-term time horizon (years)	Please explain
Long-term business objectives	Yes, water- related issues are integrated	16-20	Our purpose is to build A Better Tomorrow [™] by reducing the health impact of our business. And, in doing so, create multi-stakeholder value by focusing on material environmental, social and governance issues. Water is a material sustainability issues for BAT and therefore integrated into our long-term business objectives. It's both our responsibility and good business to use water efficiently – from eliminating loss and leaks, reducing withdrawal, to increasing water recycling. Water management is vital to sustainable farming, especially since agriculture accounts for an average of 70% of freshwater withdrawals globally. We

			are helping our directly contracted farmers to irrigate their crops more sustainably, while protecting access to clean water for local communities. We know that water security issues are exacerbated by climate change. We have operations in some of the most severely affected areas over the short and long term (for example, we have sites in Chile, which is expected to be one of the most water stressed countries in the world by 2040), which makes it more important to be stewards of water. This leads to additional water conservation focus in these areas. We will achieve our objectives by reducing water use in operations, tobacco growing and utilise circular economy principles in our product design.
Strategy for achieving long-term objectives	Yes, water- related issues are integrated	16-20	BAT's materiality assessment informs the development of our sustainability strategy, objectives, targets and decision making. Water, a material sustainability issue, is integrated into this strategy. Our plan for water includes, stretching targets in the short term. Reducing the amount of water withdrawn across the organisation, increasing the amount of water recycled within our operations to and certify 100% of operations sites to Alliance for Water Stewardship (AWS) standard (targets are set against a 2017 baseline) are current priorities. We use best practice external tools. For example, the World Resources Institutes' (WRI) Aqueduct Water Risk Atlas to identify our sites located in water stress zones in the short and long term. For example, we have operations in Chile, a country that, as per WRI, is expected to be within Top 30 water risk countries by 2040. In this context, we have had a strong focus on driving water efficiency at our two sites in the country – the Casablanca factory in Valparaíso and our green leaf threshing (GLT) site in the O'Higgins Region. We replicate this approach across our global operations. We also factor water issues into our climate scenario modelling analysis, which covers the time period up to 2040, including variables such as rainfall and available water content. This helps inform our strategic decision making.
Financial planning	Yes, water- related issues are integrated	16-20	As water related issues are integrated into our business objectives and sustainability strategy, they are also integrated into our financial planning process, including both capital and operational expenditure. Elements of our financial planning include expenditure on our water risk assessment of operations, combined with our water

stewardship targets, policies & standards leads to
expenditure on physical assets that enhances water
efficiency or increases the use of recycled water in
manufacturing. Tobacco growing is also included in
water related expenditure, this includes monitoring of
water use, supporting directly contracted farmers with
best practice crop management techniques and R&D.
This includes innovative drip irrigation technology.
This includes innovative drip imgation technology.
Successfully introduced to directly contracted farmers in
Brazil, Chile, Croatia, Mexico, Venezuela and Vietnam,
trials are taking place in Bangladesh, Pakistan &
Uzbekistan.
This cost-effective (compared to sprinkler systems)
solution increases water-usage efficiency by up to 90%.
It also increases yields by up to 15% and reduces
labour requirements by a third. Further into the future,
our financial planning includes planning for the growth
of less water intensive products (e.g. smokeless
products such as next generations of devices that
contain less tobacco). Our financial planning also
extends to up 2050, covering our 16–20-year horizon,
by assessing the potential impact of climate-related
water impacts on tobacco yield.
water impacts on tobacco yield.

W7.2

(W7.2) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Row 1

```
Water-related CAPEX (+/- % change)

78

Anticipated forward trend for CAPEX (+/- % change)

92

Water-related OPEX (+/- % change)

1

Anticipated forward trend for OPEX (+/- % change)

0

Please explain
```


In 2022, we invested in reducing fresh water use, focusing on key improvements to achieve our 5-year CAPEX plan and minimize groundwater usage. Water-related Capex rose by 78% in 2022 due to an increase in projects from 20 to 40, driven by improved operational capabilities and available resources. Capex is expected to keep rising in 2023 as ongoing projects conclude and new initiatives are approved. Capex examples 2022: Regeneration water module extended and supply piping expanded in S. Korea; new reservoir in Brazil to prevent losses; water plant upgrades in Mexico and Nigeria. In 2022, OPEX rose 1% due to price hikes, but water usage fell 7% from various saving initiatives and investments (e.g., dry urinals, sensors, efficient machinery, cooling towers, ETP and RO upgrades). We implement AWS standards and invest locally in water stewardship. OPEX trend is expected to remain flat compared to 2022, despite reduced water usage.

W7.3

(W7.3) Does your organization use scenario analysis to inform its business strategy?

	Use of scenario analysis	Comment
Row 1	Yes	Scenario analysis was performed to underpin our TCFD reporting contained within our Group 2022 Annual report. Two climate scenarios (1.5 degrees, and greater than 3 degrees) were used to assess risks posed by climate change to our business, with 4 risks (included 2 related to water scarcity/ precipitation changes on access to tobacco) and 2 opportunities subjected to advanced financial modelling. The risk assessment is an ongoing process and continues to influence Group strategy to ensure the sustainability of our business is protected over the medium and long term.

W7.3a

(W7.3a) Provide details of the scenario analysis, what water-related outcomes were identified, and how they have influenced your organization's business strategy.

	Type of scenario analysis used	Parameters, assumptions, analytical choices	Description of possible water-related outcomes	Influence on business strategy
Row	Water-	Climate change poses a	The potential impact of	The sustainability of our
1	related	risk to agriculture	global warming on	tobacco growing activities
	Climate-	production over the	precipitation and	has always been a focal
	related	medium to long term as a	temperature was a	point of our business
		consequence of potential	physical risk most likely to	strategy. However. the
		changes to precipitation	occur under climate	scenario analysis
		and temperature and the	inaction scenarios.	performed has enabled us
		resulting impact on the		to plan for potential
		effectiveness of tobacco	The assessment	changes in growing

		and the second second large second	and the second second
	production and the Group's	performed enables us to	conditions over time and
	ability to grow/ procure	consider estimated water	develop plans to mitigate
	sufficient tobacco leaf to	balance within the soil of	these potential impacts.
	meet our demand.	specific growing areas in	
		which our group contracts	Our Global Leaf Research
	To assess this risk, we	farmers on an annual	and agronomy
	commissioned an	basis over the period	Deployment Centre plays
	independent study on the	2021 - 2050. Based on	a key role in ensuring the
	risks of climate change on	water levels and	application of best
	tobacco leaf growing to	temperature, growing	practice in tobacco
	model material risks to the	yield projections (farmers	growing, including water
	Group up to 2050.	productivity - kg/ha) were	usage/ efficiency. The
		made which enabled us to	Centre conducts world-
	Climate related risks to	compute the estimated	class research, from
	tobacco-growing conditions	impact on production cost	development & testing in
	were assessed examining	and tobacco prices into	the lab to real-world field
	the impact of possible	the future which were	trials with farmers. The
	changes in temperature,	then compared to	purpose of the Centre is to
	rain and water balance in	baseline costs of tobacco.	identify tailored solutions
	the soil. We then assessed		for deployment across all
	the findings of the first	Possible outcomes	our leaf operations; focus
	phase to model the	included:	areas include Soil
	potential impact of the	 higher frequency of 	science, plant nutrition,
	climate-related risks on	droughts and high	water management, and
	crop yields, estimating the	temperatures	agronomic best practises.
	potential impact on crop	- water surplus in areas	
	productivity (kg/ha) and the	and additional water	Utilising the scenario
	impact of that yield on	deficit in some of our	analysis performed,
	farmer production costs.	growing regions.	bespoke mitigation plans
		 instances of crop 	for each country were
	Parameters used: 10	productivity stabilised or	established including cost
	largest tobacco source/	increased slightly over the	effective drip irrigation
	growing countries	longer term in some	solutions, drought
	(accounting for >80% of our	areas.	tolerance mapping, seed
	annual tobacco production),	- In some growing areas	development & precision
	the regional temperature	the overall growing	irrigation pilots. Drip
	behaviour over time, rainfall	conditions remain similar	irrigation & soil
	variation, and soil water	to the current conditions.	management
	levels (surplus and deficit).		improvement rollouts are
	88 sub-national	Financial estimates of the	planned in 7 and 3 of our
	jurisdictions, accessing	impact of these conditions	leaf operations
	historical weather data of	on tobacco prices were	respectively by 2025.
	more than 3.1K weather	estimated, with an overall	
	stations and generating	impact of between £7m	The alternative furrow
	more than 5.4K weather	and £40m across all	irrigation pilot performed
	forecast maps, were used	growing areas modelled	in Bangladesh (high risk

	to poppop prodicted	(depending on wear and	nor (quaduat) in 2024 in
	to assess predicted	(depending on year, and climatic conditions	per Aqueduct) in 2021 is an example of targeted
	growing conditions and		
	impact on tobacco	generating the range).	innovation. The pilot
	production yield.	-	involved 13,592 farmers
		The potential financial	(~37% of hectares
	Assumptions include the	impact on annual cost of	contracted in 2021), and
	impact of crop yields/	tobacco is less than 5%	reduced water usage by 5
	access and cost to tobacco	and current climate	and 8%. We plan to roll
	and financial impact of the	change trajectories	out this technique, with
	scenario, as well as the	indicate it is unlikely that	targets of >85% of the
	frequency and severity of	the Group would face	contracted farmer base by
	weather events such as El	reduced production	2025 and 100% by 2030.
	Nino and La Nina events	capacity as a	
	which impact tobacco	consequence of	
	growing conditions in the	consistent supply	
	Southern Hemisphere.	constraints.	
	These were modelled to		
	determine the projected		
	impact on cost of tobacco		
	and develop mitigation		
	plans.		
	Data sources include:		
	Country Growing Regions,		
	Crop stages, planting		
	dates, water requirement,		
	root system characteristics,		
	historical data from NOAA		
	stations.		
	Analytical choices made		
	aligned to two climate		
	scenarios from the UN		
	IPCC methodology and		
	GHG trajectories for RCP		
	2.6 and 8.5. This provides		
	us with a range of climate		
	risk: best case and		
	worstcase scenario for		
	BAT. We further analysed 3		
	timeframes: short (2020-		
	2025), medium (2026 -		
	2035) and long term (2036-		
	2050).		

W7.4

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water? Yes

Please explain

In order support the delivery of external water-related targets and factor in the wider environmental costs of water, BAT has implemented Internal Water Pricing ("IWP") for investment decisions along with its Capex Balanced Scorecard for all projects over £0.5m.

The application on the IWP ensures the net book value of business cases considers the true cost of water and assists in prioritisation of projects that support the Group's objectives in reducing water usage and increase the water we recycle. The IWP shadow price set is higher for a "Water Stressed" area as defined as per the WRI Aqueduct map which reference to sites in the "Extremely High risk" or "High risk" zones.

In addition, the Capex Balanced Scorecard requires the assessment of capital projects on the Group's water KPIs, the outcome of which is integrated into the capital allocation approval process.

W7.5

	Droducto	Drimony rooon	fornat	Plaasa	ovolain		
impa	ct?						
(W7.5) Do you classify any of your current products and/or services as low water							

	Products and/or services classified as low water impact	Primary reason for not classifying any of your current products and/or services as low water impact	Please explain
Row 1	No, but we plan to address this within the next two years	Other, please specify We are evaluating the water impacts of our New Categories portfolio of non-combustible products. This information might be used to benchmark our products and classify them as low water impact where applicable	Currently we are not defining any of our products or services as low water impact. But we are evaluating the water impacts of our New Categories portfolio of non- combustible products compared to similar products in the market. This information might be used to benchmark our products and classify them as low water impact where applicable.

W8. Targets

W8.1

(W8.1) Do you have any water-related targets? Yes

W8.1a

(W8.1a) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.

	Target set in this category
Water pollution	Yes
Water withdrawals	Yes
Water, Sanitation, and Hygiene (WASH) services	Yes
Other	Yes

W8.1b

(W8.1b) Provide details of your water-related targets and the progress made.

Target reference number Target 2

Category of target Water withdrawals

Target coverage

Company-wide (direct operations only)

Quantitative metric

Reduction in total water withdrawals

Year target was set 2018

Base year 2017

Base year figure 5,195

Target year 2025

Target year figure 3,377

Reporting year figure 3.498

% of target achieved relative to base year

93.3443344334

Target status in reporting year

Underway

Please explain

Our target is to reduce the total amount of water withdrawn by 35% by 2025 by 2017 base year.

Although our manufacturing processes (direct operations) are not particularly water intensive, we understand that water stress is a reality in many parts of the world where we operate. Thus, we have set the targets for water withdrawals reduction.

In 2022, we achieved an absolute 32.7% decrease in total amount of water withdrawn (from 5 195 megalitres in 2017 to 3,498 megalitres in 2022). Our 2025 target is reduction of water withdrawn by 35% vs 2017 (i.e. to 3 377 megalitres). Thus, % of target achieved in 2021 is equal to (5195 - 3498)/(5195 - 3377) = 93% (subject to rounding).

Target reference number

Target 4

Category of target

Water recycling/reuse

Target coverage

Company-wide (direct operations only)

Quantitative metric

Increase in water use met through recycling/reuse

Year target was set 2020

Base year 2017

Base year figure 13.3

Target year

2025

Target year figure 30

Reporting year figure 22.6

% of target achieved relative to base year 55.6886227545

Target status in reporting year

Underway

Please explain

Water recycling rate (%) is calculated as Water recycled (m3) divided by total water demand, which is Water recycled (m3) plus Water Withdrawn (m3).

Our target is to achieve 30% water recycling rate by 2025.

Water recycling/ reuse on site can help to reduce the amount of fresh water needed for out business, thus reducing water withdrawn.

We continue to focus on water recycling, sharing examples of good practice across the Group with many being taken up by factories not previously undertaking any recycling and reuse activities.

The target is achievable subject to water recycling/ reuse programs expansions at strategic sites. In addition to primary motivation, setting the target is driven by Risk mitigation, increasing freshwater availability for users, natural environment and Corporate social responsibility.

In 2022 we achieved a % of water recycled/ reused of 22.6%, which is by 9.9 pp higher than 2017 figure of 13.3%. % of target achieved in 2022 is equal to (13.3 - 22.6)/(13.3 - 30.0) = 55%

Target reference number

Target 5

Category of target

Community engagement

Target coverage

Company-wide (direct operations only)

Quantitative metric

Increase in number of population participating in community engagement activities

Year target was set 2021

Base year 2021

Base year figure

5

Target year 2025

Target year figure

Reporting year figure 36.36

% of target achieved relative to base year

25.1294117647

Target status in reporting year

Underway

Please explain

Stakeholder and community engagement is a fundamental requirement of the AWS Standard and important to BAT's activities in the local water basins in which we operate. To reflect the importance of this, we have set an ambitious target to have 100% of our operations (factories and GLTs) sites certified as per AWS Standard 2.0. This target was set in early 2021 and reflects our commitment to adhere to the international benchmarking for water management.

By the end of 2022, we achieved certification in 36.3% of our operations sites (factories and green leaf threshing plants; 24 out of 66) and are on track to meet the 100% target by 2025. % of target achieved in 2022 is equal to (15 - 36.36)/(15 - 100) = 25.13%

Target reference number

Target 1

Category of target

Water pollution

Target coverage

Company-wide (including suppliers)

Quantitative metric

Reduction of hazardous substance use

Year target was set

2018

Base year 2017

Base year figure 99.57

Target year 2022

Target year figure

Reporting year figure

100

% of target achieved relative to base year

100

Target status in reporting year

Achieved

Please explain

BAT is an active member of CORESTA's Agrochemicals Advisory Committee, promoting the alignment and guidelines across the Tobacco Industry.By following WHO/FAO guidelines on pesticide classification by hazard and CORESTA Guide N°27, BAT has programs to eliminate HHPs, including active ingredients listed by Rotterdam Convention, Stockholm Convention and Montreal Protocol. BAT's program require all suppliers to cover the following steps annually:

• Acknowledge the receipt of the Leaf Suppliers Manual latest version issued by BAT, which contains the Agrochemicals and Formulations not to be used in the tobacco production.

• Suppliers subsequently submit the Agrochemical List, containing all the crop protection agents to be used in each step of the tobacco production.

• They also submit the Agrochemicals Risk Assessment, by tobacco type.

• Last, to check compliance, BAT completes the Agrochemical Residues testing in the packed product as per Risk Assessment approved by BAT.

In 2022, 100% of total tobacco purchased and tested were free of quantifiable levels of HHPs; we continue monitoring suppliers adherence to the guidance. While the same standard applies to any tobacco consumed within the US, the above figures do not contain US and exotic tobacco data and we are working to integrate those going forward.

Target reference number Target 3

Category of target

Water, Sanitation and Hygiene (WASH) services

Target coverage

Company-wide (direct operations only)

Quantitative metric

Increase in the proportion of employees using safely managed drinking water services

Year target was set 2019 Base year 2019 Base year figure

90

Target year 2022

Target year figure

Reporting year figure

100

% of target achieved relative to base year 100

Target status in reporting year Achieved

Please explain

As part of our Global Water Management Standard, which was last updated and issued in 2019, it is a mandatory requirement for all BAT facilities to provide adequate WASH services.

Annually all BAT locations complete a self-assessment (EHS Roadmap) which includes compliance with WASH services. As of 2022, 100% of BAT locations were achieving this goal. The aim now is for all sites to maintain 100%.

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?

Yes

W9.1a

(W9.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

Disclosure module	Data verified	Verification standard	Please explain
W8 Targets	-35% of total water withdrawn (vs 2017 baseline) by 2025	ISAE 3000	We have chosen to externally assure this data point as it relates to a material sustainability issue. The scope of this target means that if met, BAT has met a substantial sustainability target, therefore we have assured under ISAE 3000 to provide stakeholders confidence in the validity and accuracy of the target. KPMG Limited Assurance of this data point is performed annually; scope is companywide. For full Assurance Statement - see page 94 to 95 of the attachment. Relevant figure is in page 94

W10. Plastics

W10.1

(W10.1) Have you mapped where in your value chain plastics are used and/or produced?

	Plastics mapping	Please explain	
Row 1	Not mapped – but we plan to within the next two years	We currently have not mapped where our plastics are used but we have a full view of where we use plastics in our Primary and Secondary packaging for all our products.	
		The plastics that we track for usage is in our direct operations used to package our products. These plastic packaging cover a total tonnage of 32 000 tons (2022 volumes) across 5 product categories.	
		We also use plastics in our devices for THP (Tobacco Heating Products) and Vapour devices. These currently are not tracked, but we plan to put systems in place over the next 2 years.	
		These plastics cover our Primary packaging (consumer related) and secondary packaging (wholesale related) packaging. We do not intend to track our tertiary Packaging, which is what gets used only for bulk shipment on sea and air freight cargo (e.g. Shrink-wrap of pallets)	

W10.2

(W10.2) Across your value chain, have you assessed the potential environmental and human health impacts of your use and/or production of plastics?

	Impact assessment	Please explain
Row 1	Not assessed – but we plan to within the next two years	We currently track waste to landfill, recycling rates and waste generated from our operations sites, but this is not broken down into specific categories such as Plastic, Board and metal.
		For the plastics used in our products we track what goes into our products and components of these products that are technically recyclable. By 2025, we aim for 100% of our packaging to be reusable, recyclable or compostable.
		By the end of 2022 we reached a 92% recyclability level across all our primary and secondary packaging not only focusing on plastics but on board, paper, and metals.
		For plastics we have achieved a technical recyclability rate of 86.55% across our 5 product categories.

W10.3

(W10.3) Across your value chain, are you exposed to plastics-related risks with the potential to have a substantive financial or strategic impact on your business? If so, provide details.

	Risk exposure	Value chain stage	Type of risk	Please explain
Row 1	Yes	Supply chain Product use phase	Regulatory	With cigarette butt littering and current Extended Producer Responsibility (EPR) schemes focusing on this – there will be a substantial financial impact to the business. This is the reason we are looking into alternative materials such as paper filters and plastic free materials which is in early development stages. If all EU member states implement EPR schemes for Butt littering this could have a financial impact to the business circa 100 million Euros /year to our company. There are more EPR schemes being proposed global by individual countries, but the financial impact has yet to be defined.

W10.4

(W10.4) Do you have plastics-related targets, and if so what type?

	Targets in place	Target type	Target metric	Please explain
Row 1	Yes	Plastic packaging	Increase the proportion of post- consumer recycled content in plastic packaging Increase the proportion of plastic packaging that is recyclable in practice and at scale	At a corporate level we have 2 targets being tracked, that are also being reported in our 2022 Combined Annual & ESG Report. The first target is an average of 30% of recycled content in our plastic packaging and the second one is 100% of our packaging to be reusable, recyclable or compostable by 2025. Current recycled content by the end of 2022 was 0.25% and total packaging reusability, recyclability or composability was 92%. The challenge on recycled content is around supply from both Plastic converters and pyrolysis oil producers. There is very limited supply with a 100% premium price that is not easy to take on as it impacts the product profitability. Of the total Packaging our plastic recyclability by the end of 2022 was 86.55%. Our target is to get to 100% by the end of 2025. We have several projects in flight to help us reach this objective There is another metric we are tracking as well but these are not reported externally. This is looking at the elimination of unnecessary SUP. In our Tobacco Heat Products, we have removed all of the outer wrap on our devices boxes and moved from plastic device trays to pulp trays which has resulted in a total plastic reduction of 327 tons. In our Vapour products we have removed all outer wrap from devices and consumables amounting to 250 tons of plastic.

W10.5

(W10.5) Indicate whether your organization engages in the following activities.

	Activity applies	Comment
Production of plastic polymers	No	
Production of durable plastic components	No	
Production / commercialization of durable plastic goods (including mixed materials)	No	
Production / commercialization of plastic packaging	No	
Production of goods packaged in plastics	Yes	
Provision / commercialization of services or goods that use plastic packaging (e.g., retail and food services)	Yes	

W10.8

(W10.8) Provide the total weight of plastic packaging sold and/or used, and indicate the raw material content.

	Total weight of plastic packaging sold / used during the reporting year (Metric tonnes)	Raw material content percentages available to report	% post- consumer recycled content	Please explain
Plastic packaging used	32,014	% post- consumer recycled content	0.23	We have only started using recycled content in our Modern Oral Velo range amounting to 75 tons. This has been used in our UK end market. Our target is to have an average of 30% of recycled content in our plastic packaging by 2025. This is going to be a real challenge as there is a significant supply challenge by the industry for us to meet this commitment. Suppliers have already cut our demand for 2023 by 50% owing to poor quality of pyrolysis oil which is needed to convert into final plastics.

W10.8a

(W10.8a) Indicate the circularity potential of the plastic packaging you sold and/or used.

	Percentages available to report for circularity potential	% of plastic packaging that is reusable	% of plastic packaging that is technically recyclable	Please explain
Plastic packaging used	% reusable % technically recyclable	0	86.55	Our total plastic packaging we sold in 2022 was 32 014 tons. Of this 27, 732 tons is classified as technically recyclable. Our goal is to have all of our plastics to be technically recyclable by 2025. We have specific glidepaths to meet this target: for 2023 - 91%, 2024 - 96% and 2025 100%

W11. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

W11.1

(W11.1) Provide details for the person that has signed off (approved) your CDP water response.

	Job title	Corresponding job category	
Row 1	Tadeu Marroco - Chief Executive	Chief Executive Officer (CEO)	